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Abstract. To enhance the accuracy and real-time performance of object detection in autonomous
driving scenarios, an optimized detection network is constructed based on the YOLOv5 model. The
network integrates a BiFPN feature fusion structure, CloU loss function, and data augmentation
strategies to strengthen multi-scale object perception. Experiments conducted on the KITTI and
nuScenes datasets demonstrate that the optimized model improves the mAP@0.5 from 87.6% to
91.2% and the recall rate from 82.9% to 88.3%, while reducing the inference latency to 20.1 ms.
These results show significant improvements in both precision and efficiency over the original
model, validating its effectiveness and adaptability in complex traffic environments.
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1. Introduction

The rapid development of autonomous driving technology puts forward higher requirements for
target detection accuracy and real-time performance, and deep learning shows significant
advantages in this field. Due to the complex road environment, multi-target interference and edge
computing resources, the traditional detection model is difficult to meet the actual deployment
requirements [1]. In this paper, we focus on the structural optimization and performance evaluation
of the target detection model, and construct an optimization strategy and a multi-dimensional
evaluation system suitable for autonomous driving scenarios, with a view to improving the accuracy,
stability, and engineering adaptability of the detection system, and promoting its wide application in
intelligent transportation.

2. Fundamentals of Autonomous Driving Target Detection

2.1 Overview of Autonomous Driving Systems

Autonomous driving system is a complex intelligent system integrating sensing, decision-making
and execution, which mainly includes perception layer, decision-making layer and control layer.
The perception layer collects environmental information through sensors such as cameras, lidar,
millimeter wave radar, etc., the decision-making layer performs path planning and behavioral
judgment based on the perception results, and the control layer executes the corresponding vehicle
operation commands [2]. Target detection, as the core task of the perception layer, directly affects
the system's recognition accuracy of obstacles, pedestrians, traffic signs and other targets, and is a
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key link in realizing the safety and reliability of autonomous driving. The schematic diagram is
shown in detail in Fig. 1.
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Fig 1 Autopilot Schematic

2.2 Introduction to the target detection task

Target detection is a computer vision task that combines target recognition and localization in
identifying specific classes of targets in an image and labeling their bounding boxes. In autonomous
driving, target detection is mainly used to identify key targets such as vehicles, pedestrians, traffic
signs, signals, etc., to ensure the safety and real-time driving decisions [3-4]. This task needs to deal
with light changes, target occlusion, scale differences, etc. in complex environments, which puts
higher requirements on the accuracy and speed of detection algorithms, and is one of the core
technologies in the automatic driving perception system.

2.3 Application of Deep Learning in Target Detection

Deep learning, by virtue of building a deep neural network system, significantly enhances the
accuracy and robustness of feature extraction and target discrimination in automatic driving target
detection, and the mainstream methods have a two-stage model based on candidate frames,
YOLOVS, as a typical representative object, adopts CSPDarkNet as the backbone network, and then
introduces the constituent structures of PANet, FPN, etc., to realize the multiscale feature
aggregation, which Greatly improve the small target detection capability [5].

The target detection task is essentially to predict the category ¢ , bounding box

location (% Y>W:") and confidence #  of each target in the image. A typical one-stage loss function
is:
L = /lcts ’ chs + ﬂ"mc ) Lbbox + }"obj ) Lobj (1)
where Lo is the category loss, Ly is the bounding box regression loss (e.g., GloU), and Loy is

the target existence probability loss.

Detection results based on YOLOvVS in an autonomous driving scenario (Fig. 2). In a typical
urban road environment, the model is able to accurately detect and label pedestrians, vehicles, and
traffic signs [6]with confidence levels all above 0.9, showing excellent real-time performance and
accuracy. According to the KITTI dataset experiments, YOLOVS ] mAP@0.5 i& % 92.1%, the
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inference speed is more than 45 FPS, which meets the real-time demand of the automatic driving

system.

Original Image Detection Result

Fig. 2 Effectiveness of deep learning target detection

2.4 Comparative Analysis of Mainstream Detection Models

Mainstream target detection models are mainly divided into two categories: two-stage and
one-stage. Two-stage models, represented by Faster R-CNN, perform classification and regression
after generating candidate regions first, with high accuracy, suitable for scenes requiring high
detection accuracy; one-stage models, such as the YOLO series and SSD, regress the target
category and bounding box directly from the image, with faster inference speed, more suitable for
real-time autonomous driving tasks [7-8]. In recent years, YOLOvS5 and YOLOVS strike a balance
between speed and accuracy and are widely used in real road scenarios.RetinaNet improves the
recognition of small and hard-to-detect targets by introducing Focal Loss, while DETR fuses the
Transformer structure to achieve end-to-end modeling with stronger contextual understanding. Each
model has its own focus in terms of accuracy, speed, complexity, and ease of deployment, and it is
necessary to choose an adapted solution according to the actual needs of autonomous driving
scenarios [9].

3. Deep Learning Target Detection Model Optimization

The optimization of deep learning target detection models mainly focuses on three aspects:
network structure improvement, loss function design and training strategy optimization to enhance
detection accuracy, speed and robustness [10]. In terms of structure optimization, feature pyramid
network (FPN) or bidirectional feature pyramid (BiFPN) is often introduced to enhance the
multi-scale target detection capability. In YOLO series, residual structure and cross-stage partial
connection (CSP) are utilized to enhance gradient flow transfer and parameter utilization[11].

Loss function optimization is a key part, and the commonly used bounding box regression loss is
GIoU (Generalized IoU):

Loy =1—IOUM

(S
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Where, C is the minimum closure region, A andB are the prediction frame and the real frame,

and GloU penalizes the non-overlapping region on the basis of IoU to improve the localization
accuracy.
To cope with the category imbalance problem, Focal Loss is widely used in categorization loss:

LFocal =, (1 _pz)y IOg(pt) (3)

where Pr s the predicted probability and” is the parameter that regulates the focus of difficult

cases.

Data enhancement methods such as Mosaic and MixUp, as well as cosine annealing learning rate
scheduling strategy are also introduced in the training to effectively improve the model
generalization ability and convergence speed, thus better adapting to the complex scenarios in
automated driving [12].

4. Performance evaluation methodology design

4.1 Performance assessment indicators

Commonly used metrics include Mean Average Precision (mAP), which reflects the overall
accuracy of detection; Precision and Recall are used to evaluate false and missed detections; and
F1-score takes into account the balance between the two [13]. In terms of real-time metrics, the
frame rate (FPS) measures the model inference speed, while the number of model parameters and
inference latency reflect its deployment efficiency. False detection rate (FPR) and missed detection
rate (FNR) are particularly important for safety-sensitive autonomous driving systems and are key
metrics in performance evaluation.

4.2 Evaluation Process and Test Platform

The evaluation process mainly consists of five steps: data preparation, model loading, inference
execution, metrics calculation and results analysis (see Table 1). First, select a standard test dataset,
unify the input size and preprocessing method; load the model to be tested and configure the
inference parameters; then execute the testing process, record the prediction bounding box and
category labels; calculate the core metrics, such as mAP, Recall, FPS, etc., to comprehensively
evaluate the model performance [14]. The test platform usually chooses deep learning frameworks
with GPU acceleration capability, such as PyTorch or TensorFlow, supplemented with tools such as
TensorRT for deployment verification.

Table 1 Typical test platforms and their application scenarios

Platform Type Tool/Environment Applicable Scenario
Training & Validation ) Model development and comparison
PyTorch, MMDetection )
Platform experiments
Inference & Deployment Real-time performance testing and edge
TensorRT, ONNX
Platform deployment
Simulation Verification Simulation testing in autonomous
CARLA, Apollo .. .
Platform driving scenarios
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4.3 Experimental design for comparing the performance of different models

Different model performance comparison experiments need to be conducted under a unified
dataset, evaluation index and hardware platform to ensure comparable results. The experimental
process includes model selection, parameter standardization, unified input preprocessing, output
result comparison and quantitative analysis [15]. The main comparison metrics include mean
average precision mean (mAP), inference speed (FPS), false positive rate (FPR) and model
complexity (parametric quantity).

The average accuracy is calculated as follows:

1 N
mAP:—Z Il Precision (r)d,
N )

Precision,(r)

where Vs the total number of categories and is the precision-recall curve for

category! .

The experimental setup needs to cover a variety of scenarios (daytime, nighttime, rainy day see
Fig. 3) with different target densities to comprehensively reflect the model's adaptability in complex
traffic environments [16].

Fig 3 Perceived Adaptation of Models in Different Environmental Conditions

4.4 Evaluation of data set selection and construction criteria

Commonly used public datasets include KITTI, nuScenes, Waymo Open Dataset, etc., covering
a wide range of weather, lighting and traffic density conditions, which are suitable for evaluating
the robustness of the model. The dataset should contain high-quality images, accurate bounding box
labeling, and target category information to ensure a balanced distribution of multi-category targets
(e.g., vehicles, pedestrians, and traffic signs) in the sample [17]. If a self-built dataset is used, the
parameters of the image acquisition equipment, annotation specifications (e.g., using Pascal VOC or
COCO format), and quality control processes should be clarified to ensure data consistency and
reproducibility. The dataset division should follow the principle of 70% training, 15% validation,
and 15% testing to avoid the crossover of training and testing samples and to improve the
objectivity and generalization of the evaluation results.
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5. Experimental design and analysis of results

5.1 Experimental environment and configuration

The experimental environment is based on Ubuntu 20.04 operating system with PyTorch 1.13
deep learning framework, equipped with NVIDIA RTX 3090 GPU with CUDA version 11.7 and 24
GB of video memory. the processor is Intel Core 19 with 64 GB of RAM, which can satisfy the
demand of high concurrency data loading and model inference [18]. During the training process, the
batch size was set to 16, the initial learning rate was 0.001, the optimizer was Adam, the number of
training rounds was set to 100, and the early stop mechanism was enabled to prevent overfitting.
The datasets used for the experiments include KITTI and nuScenes, and the image resolution is
uniformly adjusted to 640%384 to ensure the stability of the model in different scenes.

5.2 Model Training and Validation Process

Before model training, the dataset is divided into training set, validation set and test set in 7:2:1,
and the image size is unified and normalized. YOLOVS architecture is used for training, and Mosaic,
MixUp and other data enhancement strategies are introduced to improve the model generalization
ability. The optimizer selects Adam, sets the initial learning rate and weight decay, and uses the
learning rate scheduling mechanism to adjust the parameters dynamically. The mAP and loss
changes on the validation set are continuously monitored during training, and the Early Stopping
mechanism is applied to prevent overfitting. The optimal model is saved after each round of training
for subsequent performance evaluation and visualization analysis.

5.3 Comparison of model performance before and after optimization

In order to verify the effectiveness of the proposed optimization strategy, the changes in several
key performance indicators of the target detection model before and after optimization are
compared and analyzed, and the results are shown in Table 2.

Table 2 Comparison of model performance before and after optimization

.. Model Inference
Model mAP@0.5 | mAP@0.5:0.9 | Recall | Precision FPS
. Parameters | Latency
Version (%) 5 (%) (%) (%) (1080P)
M) (ms)
Original
87.6 553 82.9 84.5 46.2 7.5 21.7
YOLOVS5s
Optimized
91.2 60.8 88.3 89.6 48.9 8.1 20.1
YOLOvS5s+

The optimized model YOLOv5s+ outperforms the original YOLOvSs across multiple
dimensions. The mAP@0.5 increases from 87.6% to 91.2%, and mAP@0.5:0.95 rises to 60.8%,
indicating a significant enhancement in overall detection accuracy. The recall improves from 82.9%
to 88.3%, and precision from 84.5% to 89.6%, effectively mitigating false positives and missed
detections. With only a slight increase in model parameters to 8.1M, the inference frame rate
increases from 46.2 FPS to 48.9 FPS, and the inference latency is reduced to 20.1 ms. These results
further demonstrate that the optimization not only boosts detection performance but also maintains
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excellent real-time capability and computational efficiency, making it suitable for deployment in
latency-sensitive autonomous driving systems. See Figure 4 for details.

Original YOLOv5s
mAP@0.5 Optimized YOLOVS5s+

Fig. 4 Comparison of model performance before and after optimisation

5.4 Misdetection and missed detection analysis

In order to comprehensively assess the robustness of the model in the actual road environment,
this paper analyzes the two dimensions of false detection rate and leakage rate respectively, and the
results are shown in Tables 3 and 4.

Table 3 Comparison of False Detection Rates by Target Category

Category False detection rate of original model (%) | Optimised model false positive rate
(%)
Pedestrian 6.4 3.1
Small Vehicle 4.9 2.7
Large Vehicle 5.5 2.9
Traffic Sign 7.1 3.8
Traffic Light 6.7 3.6

As can be seen in Table 3, the optimized model's false detection rates on all target categories are
significantly reduced. The false detection rate of pedestrian category is reduced from 6.4% to 3.1%,
traffic signs from 7.1% to 3.8%, and signals from 6.7% to 3.6%, which shows that the model's
ability to discriminate small-sized targets is significantly enhanced. The decrease in the overall false
detection rate reflects that the optimization strategy has a good effect in improving the accuracy of
the model discrimination boundary and reducing false detections, which helps to improve the
stability and decision-making reliability of the automated driving system in complex urban traffic
environments.

Table 4 Comparison of leakage detection rate under different scenario conditions

Category False detection rate of original model (%) Optimized model false positive
rate (%)
Daytime Urban 3.2 1.5
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Road
Night Road 7.8 4.2
Rainy Weather 8.9 5.4
Tunnel/Shadow
10.3 6.7
Area

As shown in Table 4, the optimized model significantly improves the leakage detection in
complex environments. The leakage detection rate is reduced from 7.8% to 4.2% for nighttime
scenarios, from 8.9% to 5.4% for rainy scenarios, and from 10.3% to 6.7% for tunnels or shaded
areas. Among them, the improvement of adaptability to low-light environment is especially obvious.
This result indicates that the optimized detection model maintains a strong target sensing ability
under edge conditions such as low light and weather changes, which further improves the
adaptability and safety of the autonomous driving system to multiple scenarios. The details are
shown in Fig. 5.

Original Model FNR (%) False Negative Rate Comparison Under Different Scenarios
Optimised Model FNR (%) 10.3
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Fig 5 False Negative Rate Comparison Under Different Scenarios

6. Conclusion

This paper focuses on the target detection task in automatic driving scenarios, systematically
explores the specific methods of deep learning models in terms of structure optimization, loss
function improvement and training strategy adjustment, and constructs a multi-dimensional
performance evaluation system. The experimental results show that the optimized model has
significant improvement over the baseline model in terms of precision, recall and inference
efficiency, and exhibits stronger robustness and adaptability in complex traffic environments.

Future research can further integrate the Transformer structure with the multimodal perception
mechanism to improve the recognition effect of the detection model on low-light, small and
occluded targets; exploring a more efficient lightweight network structure and edge inference
acceleration scheme for the computational constraints of in-vehicle deployment environments will
be an important direction to promote the application of autonomous driving systems on the ground.
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