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Abstract. Bearings are essential components in mechanical systems, supporting the rotation of 
various machine parts in motors, wind turbines, vehicles, and industrial robots, making their health 
critical for system performance and reliability. Traditional diagnosis methods, such as vibration and 
acoustic analysis, along with temperature monitoring, often demand expertise and may struggle to 
detect early faults. However, the introduction of deep learning technology has created new 
opportunities for more effective bearing fault diagnosis. The application of deep learning-based 
bearing fault diagnosis in the industrial sector has gained significant attention and multiple types of 
deep learning networks have already been successfully implemented. This paper aims to provide a 
clear review of bearing fault diagnosis based on deep learning algorithms. This essay focuses on 
two of the most popular deep learning networks, Autoencoder and Convolutional Neural Networks. 
Their mechanism and applications are analyzed based on essays and research paper related to the 
field of bearing fault diagnosis. Finally, conclusions are presented to summarize the current 
development and point out faced challenges and future trends of these deep learning networks. It is 
also expected that this narrative not only serves as a cogent overview of the contemporary fault 
diagnosis technologies but also provides convenience and inspiration for further study in this field. 
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1. Introduction 

Modern mechanical rotary machines are systems with great complexity which demands a large 
number of gears and bearings working together for target tasks [1]. Nevertheless, damage and failure 
of these machines are prone to happen due to the rough working environment, false operation, and 
long-term serves [2,3]. This is especially true for components called Rolling Element Bearings (REBs) 
whose broken may lead to nearly 50% of equipment failure cases and cause huge financial and time 
cost [4,5]. Thus, fault diagnosis technologies have to be applied in the industry to handle such 
problems. One of the significant focuses among them is the fault diagnosis of REBs, which has gained 
considerable attention from researchers. [6,7,8].  

With the rapid development of computer technology, implementing computing technologies such 
as the compound fault diagnosis (CFD)[1] and the intelligent fault diagnosis (IFD) [9] have become 
one of the most popular methods of fault diagnosis of rotating machines. Compound fault diagnosis 
relies on predetermined rules and heuristics to identify single faults, often lacking the ability to 
account for complex interactions between faults [48]. In contrast, intelligent fault diagnosis employs 
advanced technologies like AI and machine learning to detect complex fault patterns and relationships 
within data. Intelligent fault diagnosis adapts and learns from new data, providing more accurate and 
comprehensive fault identification. It has gained more attention due to its ability to handle intricate 
system interactions, adapt to dynamic systems, offer real-time monitoring, and reduce downtime [49]. 
Advances in AI and ML have made IFD more accessible and practical, making it a desirable solution 
for improving operational efficiency and reducing maintenance costs in various industries [10]. When 
applying an IFD based on Machine Learning (ML), the examining of a REB's condition can be 
regarded as a pattern classification task. Basically, traditional ML method includes four steps.  

First, the data collecting step acquires signals from sensor systems which reflect the health status 
of bearings in forms such as vibration signals [11] and electrical motor currents [13]. Then, with the 
help of tools such as Fourier Transform [14] and Wavelet Packet Transform [15], the process of 
feature extraction abstracts and identifies distinct signal that express information about whether the 
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machine is working properly. The extracted feature set can then be compressed by using approaches 
like Principal Component Analysis [17] and Linear Discriminant analysis [19] which leaves only the 
most discriminant features to make the diagnosis more efficient. After the selected features are fed 
into classifiers such as k-Nearest Neighbor [20] and Artificial Neural Network [21,22], the type of 
bearing fault can be recognized. 

Although bearing fault diagnosis based on machine learning, as mentioned earlier, has been widely 
applied for decades, this method does come with certain limitations. For one thing, Human expertise 
and signal processing techniques are required to design a feature extractor, but there’s no common 
feature extraction process that can cater the need of every task, which means it is likely that a new 
feature extractor needs to be designed every time a new task appears [24]. For another thing, most 
machine learning algorithms only exploit shallow-structured architectures with a single layer of non-
linear feature transformations, which makes them lack abilities of adapting to such features. Thus, a 
new and more effective method need to be found [25]. Another issue of the traditional approach based 
on ML is that it includes two stages. The first stage involves feature extraction, followed by input 
into the classifier. However, the features may not necessarily be suitable for the classifier, leading t5 
o a decrease in performance [26]. The optimal approach is to consider both stages collaboratively, 
achieving end-to-end modeling. 

In recent years, implementing Deep Learning (DL) algorithms has appeared to be one of the most 
desirable solutions for the problems mentioned in the last paragraph. DL is one of the most popular 
branches of ML whose concept first appeared in the 1980s. It is composed of layers of interconnected 
nodes (neurons). Each node processes information and passes it to the next layer. Deep networks have 
multiple hidden layers, allowing them to learn intricate representations. This is reason why Deep 
learning models are characterized by their depth. This depth enables them to capture hierarchical 
features and relationships in data. During the past few years, the techniques developed from deep 
learning research have already made lots of positive impact on a wide range of signal processing work 
[27]. It is currently widely used in fields such as neural network, graphical modeling [28], signal 
processing, and pattern recognition [30]. Deep learning networks such as Convolutional Neural 
Network (CNN), Stacked Autoencoder and Recurrent Neural Network have been applied successfully 
in areas including computer vision [31,32], medical image analysis [33,34], and machine health 
monitoring [37,38]. There are basically three important reasons why DL is becoming increasingly 
popular for researchers and extremely suitable for the fault diagnosis of REBs: 1) Data has become 
more easily accessible, allowing us to access a vast amount of industrial data more readily. One of 
the main reasons for this is that sensors are becoming more advanced and cost-effective, which 
enables their wider range of deployment [39,40]. 2) With the drastically increased computational 
ability of processing units, especially Graphics Processing Units and the significantly reduced cost of 
computing hardware, implementing, training and performing DL algorithms have become easier and 
quicker [41]. 3) Recent advances in ML algorithms and signal-processing technologies have led to 
great advance of DL algorithms and have resulted in successes of DL in various applications such as 
computer vision, phonetic recognition [42,43]. 

Deep learning algorithms seek to replicate the human brain's operation with interconnected layers 
of artificial neurons [44]. Data is input at the initial layer, passes through weighted connections and 
activation functions in hidden layers, and produces an output in the final layer [45]. These models 
adjust weights and biases through training and minimizing a loss function by comparing predictions 
to actual data. Two of the most representative types of DL structures are Autoencoders and 
Convolutional Neural Networks. Autoencoders are unsupervised learning models designed to capture 
essential features of input data by compressing it into a representation with lower dimension and then 
reconstructing it back to its original form. They are widely used for tasks like data compression and 
denoising [46]. Convolutional Neural Networks, or CNNs, are particularly suited for image and 
spatial data due to their hierarchical architecture that automatically extracts and learns features from 
data [47]. These two classes of algorithms have garnered significant research attention in recent years 
because of their versatility and effectiveness in a wide range of fields. Their capacity to handle large-
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scale and complex datasets has opened up new possibilities in the field of artificial intelligence. 
Therefore, in this paper, we will focus on summarizing and categorizing these two types of algorithms 
as well as their applications in the field of fault diagnosis. 

This paper is constructed as follows. Section 2 introduces the models and application of 
Autoencoder, one of the most popular DL algorithms applied in bearing fault diagnosis. Section 3 
describes the mechanism and applications of Convolutional Neural Network.  Section 4 concludes 
the paper and discusses challenges as well as further explorations.  

2. Autoencoder models and their applications 

2.1 Autoencoder and Stacked Autoencoder 

2.1.1 Autoencoder and Stacked Autoencoder algorithms 

Autoencoder is a DL neural network structure which contains multiple layers that try to reconstruct 
the input signals. Basically, the layers can be classified into three types: input layers, output layers 
and hidden layers. The input layer is a vector constructed by a number of neurons based on the feature 
data abstracted from rotating machines. The vector is then encoded into the hidden layer which is a 
small representation of the data in the first layer. Finally, when forming the output layer, the hidden 
layer output is decoded into an output vector which contains the same number of neurons as the input 
layer. The reason why AE is implemented is that the data abstracted to reflect the condition of 
machines is usually high-dimensional which is time and effort consuming for computer to process, 
but Autoencoder is able to minimize the size of the data and help reduce computational complexity 
[29]. AE is mainly consisted of three steps: data preparation, encoding and decoding. 

In the process of data preparation, a number of feature data is collected and turned into the input 
layer which can be considered as vector 𝑥. 𝑥 is then mapped to a lower-dimensional representative 
in the next step, which results in the nonlinear hidden layer considered as vector 𝑦. The process can 
be described as follows: 

𝑦௘ ൌ 𝑓ሺ𝑊௘𝑥 ൅ 𝑏௘ሻ 
Where  𝑓 is a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 or 𝑅𝑒𝐿𝑈 function. 
The decoding step transfers vector y into the output layer vector 𝑧 : 

𝑧 ൌ 𝑓ሺ𝑊ௗ𝑦 ൅ 𝑏ௗሻ 
A loss function is also needed to train the AE network. It measures how well the Autoencoder is 

reconstructing the input data. In order to minimize the construction error and make the compressed 
layer accurate enough to represent the input data, the AE algorithm has to be trained by means of 
repeatedly applying the loss function. The function can be conveyed as the following equation: 

𝐿஺ா ൌ ‖𝑧 െ 𝑥‖ଶ 

 
Fig. 1. Structure of Autoencoder 
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Stacked Autoencoder goes beyond a single Autoencoder. It consists of multiple layers of 
Autoencoders stacked on top of each other. Each layer learns a hierarchical representation of the input 
data. This stacking allows for the learning of increasingly abstract and complex features with the 
network deepens. The structure of SAE not only makes it more suitable for dimensionality reduction 
and feature extraction than single AE, but also makes it suitable for other functions such as 
hierarchical representation and unsupervised learning [35]. 

 
Fig. 2. Structure of Stacked Autoencoder 

2.1.2 Autoencoder and Stacked Autoencoder applications 

Autoencoders and Stacked Autoencoders offer versatile tools for feature extraction, 
dimensionality reduction, noise robustness, anomaly detection, and transfer learning in fault 

diagnosis. Their ability to learn from unlabeled data and adapt to different domains makes them 
valuable assets in ensuring the reliability and safety of complex systems and machinery. 

Mao et al. [50] introduced the Autoencoder Extreme Learning Machine to address the 
computational challenges of deep AE models. Autoencoder Extreme Learning Machine combines the 
efficiency of Extreme Learning Machine, a fast-training algorithm for single-hidden layer feed-
forward neural networks, with high classification accuracy. 

Jia et al. [51] tackled two traditional AE limitations: the extraction of similar features and the shift-
variant nature of extracted features. They proposed a new structure termed NSAE-LCN which was 
based on Normalized Sparse Autoencoders (NSAE). The NSAE differs by using ReLU activation, 
eliminating bias, replacing KL divergence with norms, and adding a soft orthonormal constraint to 
the loss function. 

In another research paper, Tao et al. [52] introduced the implement of a Stacked Autoencoder 
combined with softmax regression for the task of diagnosing bearing faults which showcases 
exceptional classification performance. Furthermore, this deep neural network exhibits robustness, 
effectively mitigating the impact of noise. Notably, the paper introduces an integrated deep neural 
network approach that encompasses ten distinct structural parameter networks, demonstrating strong 
generalization capabilities. Softmax regression, an extension of logistic regression to multiclass 
scenarios, offers a broader range of class labels compared to the binary choices in logistic regression. 
This attribute proves particularly valuable for resolving numerous complex multi-class classification 
challenges. 

To address multimode fault diagnosis, a new deep AE model was introduced by Zhou et al. [53]. 
They first trained an SAE model for mode partitioning, followed by constructing multiple SAEs for 
observing data in each mode, determining the corresponding mode. At last, another SAE was built, 
taking the determined mode into account for bearing fault classification. 

2.2 Denoising Autoencoder 

2.2.1 Denoising Autoencoder algorithm 

When implementing AE in practice, it is unavoidable that noise and variability exist in the data 
extracted in the input layer, which may cause the network to be inaccurate. This is why Denoising 
Autoencoder (DAE) is introduced. DAE is an extension of AE algorithm. The main structure of DAE 
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is the same as the traditional AE network, but some improvement is added so that the DAE algorithm 
has more adaptive capacity to input data that may contain noise and corrupted data.  

The improvement in a DAE algorithm is the way it constructs input layers. When it is processing 
an original dataset to form an input vector 𝑥, random noise is added to the input data. This noise can 
be in various forms, such as Gaussian noise, dropout, or other types of corruption. This results in the 
transformation of every origin input neuron 𝑥௜ to a new corrupted neuron data 𝑥పഥ . The Autoencoder 
is then trained to minimize the reconstruction error, which means to generate a clean version of the 
input data from the noisy version. 

The noise injection process can be defined as follows: 
𝑥௖ ൌ 𝑥 ൅ 𝜀 

where 𝜀 denotes a random noise. 
The new version of the loss function in a DAE algorithm can be described as: 

𝐿஽஺ா ൌ ‖𝑧 െ 𝑥‖ଶ 
 

 
Fig. 3. Structure of Denoising Autoencoder 

2.2.2 Denoising Autoencoder applications 

Traditional AEs, including deep stacked models, face another challenge concerning the utility of 
the extracted features [54]. Xia et al. [55] proposed a method for automatic feature extraction using 
Stacked Denoising Autoencoders, incorporating masking noise to corrupt input data. Lu et al. [56] 
extended this approach by applying data corruption throughout all layers of the SAE. 

In a publication, Shao et al. [57] presented an improved deep Autoencoder model that combines 
Denoising Autoencoders and Contrastive Autoencoders [58]. Initially, low-standard features are 
abstracted from raw vibration signals with a DAE, followed by the derivation of high-standard 
features through Contrastive Autoencoders. 

2.3 Coupling Autoencoder 

2.3.1 Coupling Autoencoder algorithm 

A Coupling Autoencoder (CAE) is a neural network architecture that integrates the concepts of 
Autoencoders and coupling layers to capture complex data distributions and dependencies.  

Usually, different sensors are applied at the same time which means that multiple types of signal 
datasets are abstracted together. A Coupling Autoencoder is therefore implemented to handle 
multisensory data. A CAE structure is also based on traditional utoencoder, but the hidden layer and 
decoding process are different. 

First, two types of signals are abstracted by different sensors at the same time and they are 
transferred into input vector m and vector n. Then the two input layers are trained separately to 
form their own AE network. After that, a similarity measure is introduced to couple the two AE 
models. Consider the hidden layer of 𝑚  is h୫ , while the hidden layer of 𝑛  is h୬ , then the 
similarity measure can be described as follows: 

𝑆ሺ𝑛,𝑚ሻ ൌ ‖ℎ௡ െ ℎ௠‖ଶ 
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In order to train the joint representation of the two AE networks, a new loss function has to be 
applied: 

Lୡ୭୳୮୪୧୬୥ ൌ 𝛼𝐿௡ ൅ 𝛽𝐿௠ ൅ 𝛾𝑆ሺ𝑛,𝑚ሻ 

Where 𝐿௡ is the AE loss function of input layer 𝑛, while 𝐿௠ refers to the AE loss function of 
input layer 𝑚. 

 
Fig. 4. Structure of Coupling Autoencoder 

2.3.2 Coupling Autoencoder applications 

In a study, Ma et al. [59] introduced a groundbreaking multimodal fusion deep neural network 
named Deep Coupling Autoencoder (DCAE), designed to uncover shared features between vibration 
and acoustic signals in the context of health status classification. This model applies a deep learning 
method based on CAE to merge multimodal signals gathered from diverse sensors. This integration 
of feature learning and multisensory data combination into a unified process is a key feature of this 
model. Additionally, the constructed deep architecture autonomously learns high-level features 
through a layer-by-layer training process, effectively capturing correlations between various signals. 
The results obtained from experiments on two multimodal datasets demonstrate the effectiveness of 
the utilization of DCAE in learning joint features from different modalities, leading to accurate health 
state classification compared to alternative approaches. 

2.4 Sparse Autoencoder 

2.4.1 Sparse Autoencoder algorithm 

A Sparse Autoencoder is a type of neural network that uses sparsity as a means of compressing 
information. Compared with a traditional Autoencoder, a Sparse Autoencoder imposes sparsity 
constraints during the learning process to create an information bottleneck without reducing the 
number of neurons in the hidden layer. In a traditional AE model, some of the neurons in the hidden 
layer may not have significant effect on the network according to different input datasets. However, 
if these neurons are corrupted by some unexpected noises, the whole network and output can be 
affected greatly. Thus, it is desirable to implement a method so that only a few neurons in the 
encoder's hidden representation are activated, while most neurons remain inactive. This is why Sparse 
Autoencoders are applied. Sparsity constraint enables Sparse Autoencoders to learn more informative 
features because only a few neurons are responsible for capturing essential information from the input 
data. 

In a Sparse Autoencoder, when a hidden layer which contains alpha nodes is formed, a sparsity 
constraint 𝑝 is constructed based on the hidden nodes, which can be given as: 

𝑝 ൌ
1
𝛼
෍𝑎௜

ఈ

௜ୀଵ

 

where 𝑎௜ is one of the nodes in the hidden layer.  
Then, in order to form the loss function in the training set and inactivate some nodes in the hidden 

representation, these nodes need to be set as close to zero as possible. Therefore, an additional penalty 
term is needed in the loss function 

𝐿௦௣௔௥௦௘ ൌ 𝐿 ൅ 𝛽෍KLሺ𝑝෤||𝑝ሻ 



 

643 

Advances in Engineering Technology Research ICCITAA 2024
ISSN:2790-1688 Volume-9-(2023)

෍KLሺ𝑝෤||𝑝ሻ ൌ෍𝑝෤ log
𝑝෤
𝑝
൅ ሺ1 െ 𝑝෤ሻ log

1 െ 𝑝෤
1 െ 𝑝

 

The sparsity parameter 𝑝෤  is obtained through dedicated methods and experiments, while the 
Kullback–Leibler divergence KLሺ⋅ሻ serves as a penalty metric, measuring the difference between 
the expected and observed distributions. If  𝑝෤ ൌ 𝑝 , then KLሺ𝑝෤||𝑝ሻ ൌ 0. As 𝑝෤ approaches 0 or 1, 
the KL-divergence tends towards infinity. The L refers to the original traditional AE loss function. 

Sparse Autoencoders are commonly used in unsupervised learning tasks, such as feature learning, 
anomaly detection, and data compression. They are particularly useful when trying to discover 
underlying patterns or features in data while maintaining a compact representation. 

 
Fig. 5. Structure of Sparse Autoencoder 

2.4.2 Sparse Autoencoder applications 

Chen and Li [60] introduce a novel approach to bearing fault diagnosis using a multisensor feature 
fusion technique involving Sparse Autoencoder and DBN. The method involves amalgamating 
features derived from various accelerometers into a unified stream through unsupervised learning 
with Sparse Autoencoder. Subsequently, DBN is trained on these amalgamated features to perform 
classification. Extensive experiments were conducted, evaluating the method's performance on 
datasets. The results demonstrate that the proposed approach exhibits a superior recognition rate 
compared to other methods and displays lower sensitivity to training samples. Notably, in the case of 
dataset where vibration signals from different running speeds are intertwined, making it challenging 
to discern bearing status, this model still attains high classification accuracy and surpasses other 
feature fusion techniques. Moreover, the method holds promise for fusing data from diverse sensor 
types, suggesting practical applications that warrant further investigation. 

The Winner-Take-All Autoencoder, presented by Makhzani and Frey [61], addresses sparse AE 
limitations. These limitations stem from the difficulty in selecting appropriate parameters for the 
Kullback-Leibler (KL) divergence-based sparsity penalty, as well as its incompatibility with rectified 
linear unit (ReLU) AEs. Winner-Take-All Autoencoder overcomes these issues by allowing 
flexibility in the target sparsity rate, ensuring efficient training and compatibility with various 
activation functions. Li et al. [62] modified Winner-Take-All Autoencoder by adding penalty terms 
to the hidden layer and weights. 

3. Convolutional Neural Network and its applications 

3.1 Convolutional Neural Network algorithms 

Convolutional Neural Network (CNN) is a type of deep learning neural model built for tasks such 
as image recognition. CNNs are designed to replicate the workings of the mammalian visual cortex. 
These networks draw inspiration from the behavior of cells in the brain's visual cortex which contain 
cells that respond exclusively to local receptive fields [36,23]. Similar to the Autoencoder mentioned 
above, it also contains the processes of feature learning and feature classification. Basically, three 
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types of layers are included in CNN: Convolutional Layer, Pooling Layer, and Fully Connected Layer. 
Convolutional Layer uses a set of small windows termed convolutional kernels to scan the feature 
datasets gained from sensors and obtain the feature maps of input data. The function of pooling layer 
is to minimize the dimension of feature maps and computational complexity. Fully Connected Layer 
is the layer responsible for feature classification. However, it shares the same classification step and 
way of operation as AE, which means it is the first two layers that makes CNN special.  

In the Convolutional Layer, multiple learnable small filters termed convolutional kernels are used 
to slid across the input data and performing multiplication and summation. Each convolutional kernel 
has a set of weight parameters, which are learned through the training process. The operation can 
have a stride, which defines how much the kernel slides over the input data. A larger stride results in 
a reduction in the size of the output feature map, while a smaller stride maintains the size. The goal 
of the convolution operation is to capture features in the input data such as textures, shapes, and 
vibration by means of using these learned kernels. As a result of the convolution operation, the input 
data is transferred into a feature map. Each convolutional kernel generates one feature map. These 
feature maps capture information in the input data that matches the features defined in the kernel. By 
applying multiple kernels to the input data simultaneously, multiple features can be detected and 
multiple feature maps can be generated. CNNs typically accept multi-channel input (e.g., color 
images with three channels: red, green, blue) and produce multi-channel output. Each kernel performs 
a convolution on each channel and generates a feature map, and these feature maps are stacked along 
the channel dimension to form the multi-channel output.  

In every layer of the network, if the input datasets have 𝑁 matrices 𝑋௠ which match the kernel 
implemented in the convolution process, the mechanism of the convolutional layer can be described 
as follows: 

𝑌௜ ൌ 𝑓ሺ෍ 𝑋௠ ∗ 𝑃௜ ൅ 𝑏௜

ே

௠ୀଵ

ሻ 

Where 𝑌 stands for the output feature maps, while 𝑖 is the index of the feature maps. 𝑃௜ is the 
kernel used in each convolution process, and 𝑏௜  is the bias matrix added to the convolutional 
outcome. 

The Pooling Layer is used for reducing the spatial dimensions of the feature maps created by the 
Convolutional Layer while preserving the most representative data. This reduction helps decrease the 
computational load and the number of parameters in the network. The Pooling process achieve this 
goal by applying a small window called pooling window which has no learnable parameters. Pooling 
allows control over the output feature maps’ size by specifying the pooling window’s size and the 
length by which the window moves every time. Various of pooling methods can be implemented. 
Among them, two of the most popular methods are max pooling and average pooling. Max pooling 
retains the maximum value within each region, highlighting the most salient features, while the result 
of average pooling is the average value, which can provide a more smoothed representation of the 
data. 

The pooling process can be described as follows: 
𝑄௠௔௫ ൌ max൫𝑄௜௡௣௨௧: 𝑄௜௡௣௨௧ ∈ 𝑊൯ 

𝑄௔௩௘௥௔௚௘ ൌ
1
𝑛
ቌ ෍ 𝑄௜௡௣௨௧
ொ೔೙೛ೠ೟∈ௐ

ቍ 

Where the first equation describes max pooling, while the second equation describes average 
pooling. 𝑄௠௔௫ and 𝑄௔௩௘௥௔௚௘ are the output of input data 𝑄௜௡௣௨௧ inside a pooling window, and 𝑊 
stands for the data included in the window. 
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Fig. 6. Structure of Convolutional Neural Network 

3.2 Convolutional Neural Network applications in bearing fault diagnosis 

In recent times, the achievements of CNNs in diverse fields such as assignments associated with 
image recognition and classification have inspired their exploration in the realm of fault diagnosis. 
This is particularly evident in the context of rotating machinery, including components like bearings 
and gears. However, unlike 2-D image data, the input for these applications primarily comprises 1-D 
signals such as vibration and current data gathered from the machinery being monitored. To handle 
such 1-D input data, multiple solutions can be applied. 

Jiang et al. [18] introduced a new architecture called Multiscale CNN designed for intelligent fault 
diagnosis in wind turbine gears under various operational circumstances. This network uses 1-D 
convolution to handle the 1-D signal data. The key innovation is the establishment of feature learning 
with multiscale, enabling autonomous and efficient acquisition of rich fault features from raw 
vibration signals. This approach outperforms traditional methods in feature learning, noise resilience, 
and classification. The Multiscale CNN system offers end-to-end fault diagnosis, particularly 
beneficial for large wind farms. It also provides a versatile framework for fault diagnosis in various 
machinery and industrial systems. In another study, Wen et al. [12] proposed another solution for 1-
D input. A method transforming signal data to image data was implemented to divide the 1-D signal 
data into several sections and reconstruct it into the traditional 2-D image data. 

In a paper, an CNN approach for fault diagnosis of rotating machinery with multiple sensor 
fusion was presented by Xia et al. [16]. Sensor fusion was accomplished in order to improve the 
accuracy and reliability of diagnosis by merging the raw signals gained from multiple sensors to 
construct the input data without the need for manual feature engineering. It employs techniques like 
mini-batch stochastic gradient descent and dropout during training to enhance efficiency and prevent 
overfitting, particularly when data is limited. Experimental studies on REBs and gears validate the 
method, demonstrating superior performance compared to traditional approaches. The approach 
allows for broad applications in fault diagnosis across different machine and fault types, even with 
limited prior knowledge and manually crafted features.  

4. Conclusion 

In this paper, a detailed review is presented focusing on the algorithms and applications of two 
deep learning network, Autoencoder and Convolutional Neural Networks, which have been widely 
used in the field of bearing fault diagnosis. Bearings play a crucial role in the functionality and 
efficiency of various mechanical systems, making their health and maintenance paramount. 
Traditional diagnostic methods based on ML, while effective to some extent, often require hand-craft 
feature extraction, specialized expertise, and human labor. The evolution of deep learning has 
revolutionized the realm of bearing fault diagnosis. For one thing, this research paper gives a clear 
review of Autoencoder, which is classified into four categories: Stacked Autoencoder, Denoising 
Autoencoder, Coupling Autoencoder, and Sparse Autoencoder. The applications of these 
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Autoencoder in fault diagnosis have also been illustrated. For another thing, the passage also provides 
a review on Convolutional Neural Networks by narrating its way of operating as well as its 
applications. In CNNs, the fusion of data from multiple sensors and the transformation of 1-D signal 
data into 2-D image data have expanded the horizons of fault diagnosis. At the meantime, there are 
still some challenges when dealing with fault diagnosis by means of DL networks. For example, in 
practical scenarios, a diverse range of bearing faults can emerge, often simultaneously. Hence, 
additional endeavors are necessary to validate the effectiveness of deep learning in diagnosing 
multiple bearing faults. As the industrial sector continues to evolve, the integration of deep learning 
networks in fault diagnosis will undoubtedly become more prevalent in the future, offering a more 
streamlined, efficient, and proactive approach to machinery maintenance and health monitoring. 
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