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Abstract. Nucleus instance segmentation is crucial in the digital pathology, serving as a
foundational step for subsequent tasks like precision medicine and cancer prognosis. In this paper,
we introduce MAP-SegNet, a new network architecture designed for the segmentation and
classification of nuclei in H&E stained images from multiple tissues. The key innovation of
MAP-SegNet lies in its Multi-Attention Feature Fusion Module, which enhances the network's ability
to efficiently combine multi-scale feature aggregation mechanisms with local and global features.
The core component is the dual attention fusion module, which possesses the capability to adjust
spatial attention weights dynamically by the input contextual information. This functionality enables
the model to concentrate on various image regions, effectively capture long-range dependencies,
and mitigate the risk of information loss. MAP-SegNet's uplifting accuracy in nuclei segmentation
and classification is validated by rigorous quantitative experiments on the standard PanNuKe
dataset.
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1. Introduction
In the domain of medicine, the hematoxylin and eosin (H&E) staining is extensively employed

for visualizing the structures of cellular tissues and their morphological attributes in tissue sections.
To perform downstream analysis using feature information, nuclei segmentation must be conducted
as an initial step. Segmentation of nuclei is crucial in pathological diagnosis as it involves
identifying and labeling each pixel associated with distinct nuclei in histopathological images [1].
However, the traditional manual screening methods are time and effort-consuming, attributable to
the large scale and intricate cellular structures of histopathological images. Furthermore, the quality
of outcomes is heavily relies on the experience of the individual screeners and their conditions at
the time of analysis, which can lead to significant inter-observer variability [2].

In recent years, a variety of computer-assisted approaches have been introduced, marking
significant advancements over traditional manual screening. For instance, the Mask R-CNN
[3], typically utilized for object detection, often results in models that are excessively complex and
intricate, which in turn leads to a noticeable decrease in the speed of real-time inference
performance. On the other hand, the encoder-decoder architecture known as U-Net [4] has given
rise to a plethora of different variants that are widely applied in medical image analysis [5]. In
addition, a significant number of studies have incorporated attention mechanisms into their
methodologies for medical image analysis [6], with channel attention being the most commonly
implemented type that demonstrates exceptional performance under specific circumstances and
conditions. Moreover, several methods utilize the contours of nuclei [7, 8] for analysis. For example,
certain methodologies based on regression modeling effectively perform nuclei segmentation and
classification tasks by employing regression distance maps [9] as well as heat maps [10].

It is worth noting that the significant portion of the information present in H&E-stained
histological images is encapsulated within their respective channels, while the remaining
information can be found within the spatial domain of the images. Therefore, We postulate that the
integration of multiple attention mechanisms (channel attention mechanisms and spatial attention
mechanisms) will yield additional performance improvements. Based on this insight, we have
developed the Multi-Attention Feature Fusion (MAFF) module. Our aim with this module is to
seamlessly merge feature information from neighboring layers by strategically focusing attention on
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the relevant feature regions through the Dual Attention Fusion Module(DAFM). Through this
attention-based feature fusion approach, we can obtain robust features that significantly enhance the
quality of segmentation and classification outputs. The output generated by the MAFF consists of
the aggregation of multi-scale features, which are subsequently utilized to derive the final
segmentation and classification results via keypoint estimation methods. We have designated our
proposed model as MAP-SegNet for Multi-Attention Fusion Keypoint Nuclei Segmentation
Network.

Fig. 1 Framework of the proposed MAP-SegNet. DAFM denotes Dual Attention Fusion Module.

2. Methodology
2.1 Proposed Method

Our proposed model MAP-SegNet, as illustrated in Fig. 1, is closely related to the PointNu-Net
architecture [10]. PointNu-Net utilizes the Joint Pyramid Fusion Module (JPFM) for feature fusion.
This module directly cascades features from different scales together and employs dilated
convolution to model the dependencies between these multi-scale features. However, a challenge
arises when feature information from different scales is directly connected, as it can lead to
interference, making it difficult for the model to accurately extract critical location and boundary
information of the target nuclei. While dilated convolution is effective in expanding the receptive
field, it struggles to simultaneously capture both global context and local details. To address these
issues, we introduce the Multi-Attention Multi-Feature Fusion (MAFF) module.

After the MAFF processing, the features learned from this stage are utilized as inputs to three
independent branches designed for specific prediction tasks. The heatmap branch is responsible for
predicting the centroid of each nucleus, facilitating detection and classification. The kernel branch
incorporates normalized coordinates to effectively embed positional information. The feature
branch utilizes bilinear interpolation to generate high-resolution features from the learned
multi-scale representations, enhancing the detail and quality of the feature maps. As depicted in Fig.
1, After the nuclei centroids are predicted by the heatmap branch, corresponding nuclear vectors are
selected from the nuclear vectors generated by the kernel branch, based on the location of these
centroids. Finally, the instance mask prediction is produced by dynamically convolving the selected
kernel vectors with the high-resolution features obtained from the feature branch.
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2.2 Feature Fusion

The MAFF module comprises several novel Dual Attention Fusion Module(DAFM) components.
With the implementation of these modules, the attention mechanism network can dynamically
adjust the attention levels assigned to neighboring scale features. This dynamic adjustment allows
the model to better focus on crucial regions within the image, and effectively fuse the rich
contextual information present in multi-scale feature maps, thereby enhancing the robustness and
performance of the overall model.
2.2.1 Dual Attention Fusion Module

Inspired by the Global Attention Mechanism(GAM) [11], we introduce a unified and
multi-purpose structure called the Dual Attention Fusion Module(DAFM). The DAFM is designed
to effectively integrate features that have both semantic and scale differences. It comprises two
tandem components: one for capturing feature information in the channel dimension and another for
the spatial dimension. The DAFM structure is depicted in Fig. 2. The input features Ci and Ci+1 are
initially summed to form a combined input for the channel attention submodule.

Channel Attention Module: This submodule employs the dimension operation of the
exchanged to preserve cross-latitude information. Cross-dimensional dependencies in channel space
are enhanced by a Multi-Layer Perceptron (MLP).

Spatial Attention Module: Comprising two convolutional blocks, this submodule functions to
adjust channel quantities for computational efficiency. Initially, a 7×7 convolution kernel in the
first convolutional layer reduces channel numbers to lessen computational demands. The second
convolutional layer, also using a 7×7 convolution kernel, increases the number of channels back to
maintain consistency with the original feature map dimensions.

Fig. 2 Structure of DAFM. In this picture, the dotted lines symbolize 1-ω, ⊕ denote the addition,
and ⊗ denote the multiplication.

3. Experiment

3.1 Dataset and Metrics
Dataset: PanNuke [12] is recognized as the largest publicly accessible dataset focused on nuclei

segmentation and classification within H&E stained tissue images. It comprises 7904 images, each
measuring 256 × 256 pixels, derived from over 20,000 complete section images at varying levels
of magnification. The dataset provides extensive annotations for 19 distinct tissue types and 5
different nuclei types. We categorized all images into three distinct groups in accordance with the
evaluation procedures described in the relevant literature [13].

Metrics: Panoramic Quality(PQ) was introduced in [9] for nuclei segmentation. To measure the
performance of nuclei instance segmentation, we follow the approach, which is defined as follows:
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The first component pertains to the Detection Quality (DQ), and the second component
corresponds to the Segmentation Quality (SQ). TP indicates the number of correctly predicted
instances, FP refers to the number of mispredicted positive instances, and FN signifies the number
of negative instances with inaccurate predictions, which is employed to assess the precision of the
segmentation results. The ),(),( gpIOUTPgp  symbolizes the IOU value of the cumulatively
correctly matched objects. To evaluate performance of nuclei segmentation and classification, we
adhered to the methodology detailed in PointNu-Net [10].

Table 1. Comparison of experimental results on the PanNuke dataset.

Tissue Micro-Net Hover-Net CPP-Net PointNu-Net Ours
mPQ bPQ mPQ bPQ mPQ bPQ mPQ bPQ mPQ bPQ

Adrenal 0.4153 0.6440 0.4812 0.6962 0.4922 0.7031 0.5115 0.7134 0.5145 0.7152
Bile-duct 0.4124 0.6232 0.4714 0.6696 0.4650 0.6739 0.4868 0.6814 0.4831 0.6803
Bladder 0.5357 0.6488 0.5792 0.7031 0.5932 0.7057 0.6065 0.7226 0.5660 0.7266
Breast 0.4407 0.6029 0.4902 0.6470 0.5066 0.6718 0.5147 0.6709 0.5238 0.6744
Cervix 0.3795 0.6101 0.4438 0.6652 0.4779 0.6880 0.5014 0.6899 0.4988 0.6850
Colon 0.3414 0.4972 0.4095 0.5575 0.4269 0.5888 0.4509 0.5945 0.4628 0.5981

Esophagus 0.4668 0.6011 0.5085 0.6427 0.5410 0.6755 0.5504 0.6766 0.5578 0.6874
H&N 0.3668 0.5242 0.4530 0.6331 0.4667 0.6468 0.4838 0.6546 0.4709 0.6503
Kidney 0.4165 0.6321 0.4424 0.6836 0.5092 0.7001 0.5066 0.6912 0.5517 0.7090
Liver 0.4365 0.6666 0.4974 0.7248 0.5099 0.7271 0.5174 0.7314 0.5355 0.7288
Lung 0.3370 0.5588 0.4004 0.6302 0.4234 0.6364 0.4048 0.6352 0.4261 0.6482
Ovarian 0.4387 0.6013 0.4863 0.6309 0.5276 0.6792 0.5484 0.6863 0.5774 0.6946
Pancreatic 0.4041 0.6074 0.4600 0.6491 0.4680 0.6742 0.4804 0.6791 0.5258 0.6811
Prostate 0.4341 0.6049 0.5101 0.6615 0.5261 0.6903 0.5127 0.6854 0.5465 0.6940
Skin 0.3223 0.5817 0.3429 0.6234 0.3547 0.6192 0.4011 0.6494 0.4078 0.6093

Stomach 0.3872 0.6293 0.4726 0.6886 0.4553 0.7043 0.4517 0.7010 0.4949 0.7051
Testis 0.4088 0.6300 0.4754 0.6890 0.4917 0.7006 0.5334 0.7058 0.5358 0.6994
Thyroid 0.3712 0.6555 0.4315 0.6983 0.4344 0.7094 0.4508 0.7076 0.4715 0.7326
Uterus 0.3965 0.5821 0.4393 0.6393 0.4790 0.6622 0.4846 0.6634 0.4664 0.6791
Average 0.4059 0.6053 0.4629 0.6596 0.4817 0.6767 0.4957 0.6808 0.5062 0.6849
Specifically, PQs were reported for 19 different tissue types. Multi-category PQ(mPQ) assesses

detection, segmentation, and classification performance by evaluating each nucleus class
independently. The overall performance is the average PQ across the 5 nuclei classes. Binary
PQ(bPQ) focuses on detection and segmentation performance without considering classification. It
assumes that all nuclei belong to a single category and computes performance accordingly, ignoring
the specific class distinctions.

3.2 Result
On the large dataset PanNuke, the performance of the proposed MAP-SegNet is evaluated

against various advanced deep learning techniques, such as MicroNet [14], Hover-Net [9], CPP-Net
[15], and PointNu-Net [10] networks. Table 1 illustrates that the proposed MAP-SegNet exhibits
top-tier performance in the mPQ and bPQ metrics across 19 different types of organizations. In the
mPQ metric, our MAP-SegNet’s organizational performance is slightly lower than that of
PointNu-Net for Bile Duct, Bladder, Head and Neck, Uterus, and Cervix, and outperforms all other
models for the remaining organizations. In particular, in terms of average mPQ across organizations,
our MAP-SegNet outperforms the third-ranked CPP-Net and the second-ranked PointNu-Net by
2.45% and 1.05% (|mPQ(ours) − mPQ(others)| ∗ 100), respectively. In addition, MAP-SegNet
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surpasses the majority of existing methods in the bPQ evaluation metric, both in terms of overall
average performance and across various organizational benchmarks. Specifically, in terms of
average bPQ by organization, our MAP-SegNet outperforms Hover-Net, CPP-Net, and
PonitNu-Net by 2.53%, 0.82%, and 0.41% (|bPQ(ours) − bPQ(others)| ∗ 100), respectively. Fig.
3 shows some qualitative results of MAP-SegNet on the large dataset PanNuKe. The proposed
MAP-SegNet attains remarkable outcomes on the PanNuke for the segmentation and classification
of nuclei across 19 tissue.

Fig. 3 Examples of MAP-SegNet results for 19 organisations on PanNuke. The ground truth is on
the left and the MAP-SegNet prediction is on the right.

Table 2. Average PQ of each nuclei type for the three divisions on the PanNuke dataset.
Neo Epi Inflam Conn Dead

DIST 0.439 0.290 0.343 0.275 0.000
Mask-RCNN 0.472 0.403 0.290 0.300 0.069
Micro-Net 0.504 0.442 0.333 0.334 0.051
Hover-Net 0.551 0.491 0.417 0.388 0.139
PointNu-Net 0.578 0.577 0.433 0.409 0.154

Ours 0.582 0.581 0.439 0.422 0.148
Table 2 further presents the average PQ for each nuclei category within the PanNuke. As

observed, our MAP-SegNet surpasses the latest models in performance, with the exception of the
dead cell category. In some cases, distinguishing between neoplastic and nonneoplastic cells is
challenging, but our MAP-SegNet improves the average PQ of these two categories of nuclei by
0.004 compared to the PointNu-Net method. Dead cells exhibit the lowest PQ among all models,
which may be attributed to the imbalanced representation of categories within the PanNuke. This
difficulty contributes to the observed poor performance in this category.

4. Conclusion
In this paper, we introduce MAP-SegNet, a novel network architecture designed for the

segmentation and classification of nuclei. The core component of our design is the dual-attention
fusion module, which enables the network to dynamically adjust spatial attention weights based on
the input's contextual information. This selective attention mechanism enables the model to focus
on diverse regions in the image and capture long-range dependencies, mitigating the risk of
information loss. By assigning attention weights across different channels and spatial regions, the
module ensures that the network can handle diverse and complex features within the data more
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efficiently. Our approach has been rigorously validated through quantitative experiments, which
demonstrate that MAP-SegNet delivers leading performance in accuracy when tested on standard
nuclei segmentation datasets.
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