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Abstract. The vibration response of composite under dynamic excitation is used for structural
condition monitoring and damage identification, which has important engineering application value.
In this paper, a Particle Swarm Optimization based Support Vector Machine (PSO-SVM) damage
identification method is used to classify and predict the location and degree of volume loss damage
of Carbon Fiber Reinforced Polymer (CFRP). Through numerical simulation and experimental
verification, the feature parameters were extracted by principal component analysis, and then the
number of input feature parameters was optimized by PSO-SVM, and the damage was classified
and predicted. In this paper, the classification performance of several common Machine Learning
(ML) models is compared. The results show that the average accuracy of the PSO-SVM model is
97.22% and 81.94%, both higher than that of Back Propagation Neural Network (BP) and Particle
Swarm Optimization based Back Propagation Neural Network (PSO-BP).
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1. Introduction

CFRP is widely used because of its superior performance. However, the carbon fiber composite
structure is prone to damage in the process of preparation and service, and some damage is not easy
to be found in the early stage, with high concealment, which is a great harm to the service safety of
the structure. Therefore, it is very important to find a method that can carry out structural health
monitoring to ensure the safety and reliability of composite structures.

In recent years, domestic and foreign scholars have used some computational methods to predict
the damage degree and severity of structures based on the dynamic response of structures [1-4]. In
addition, Diao used Hilbert spectrum energy to construct structural damage characteristics, and used
support vector machine to detect and experiment on the location and degree of damage [5]. Khatir
combined PSO and Jaya algorithm with extended finite element (XFEM) and extended geometric
analysis (XIGA) to predict crack location [6]. Yu proposed a support vector machine multi-
classifier optimized based on genetic algorithm to realize effective and accurate recognition of the
working type of wooden poles [7]. Cuong-Le proposed a damage identification method combining
PSO and SVM, The result shows that compared with other machine learning models, the proposed
PSO-SVM has higher prediction accuracy in terms of damage location and damage degree [8].

However, the ML model still has some problems, such as being easily disturbed by noise, relying
on artificial features, and failing to meet the accuracy requirements of damage identification. In
view of the problem that existing features cannot meet the accuracy of damage recognition,
principal component analysis method can realize data compression and extract data features to meet
the problem of insufficient features and existing features cannot meet the accuracy of damage
recognition. In this paper, MPCA optimization features are used as the input of PSO-SVM model to
predict the damage location and damage grade of composite plates. The results show that the
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average accuracy of PSO-SVM model is 97.22% and 81.94% respectively, both higher than that of
BP model and PSO-BP model.

2. Methodology

2.1 Feature extraction method

PCA can compress the multi-dimensional features of the original data into a few comprehensive
features, which is a mathematical dimensionality reduction method. After dimensionality reduction,
each feature vector is linearly independent, and the original data information can be preserved to the
maximum. Based on PCA, MPCA introduces the concept of time window to obtain the eigenvector
time series after PCA.

When the plate structure is damaged, the strain response changes and the eigenvector changes
accordingly. The relative variation of the first principal component eigenvector of composite plate
structure, The first principal component eigenvector modulus length and the directional angles of
the eigenvector variation (DAEV) can be used as new eigenvectors in the monitoring process. The
specific expression is as follows:
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where y?f is the mean of the first principal eigenvector of the health state, y, (k) is the first
principal eigenvector under the & analysis step, Ay, (k) is the relative change between the

eigenvector component l//lj(k) and the mean value of the first eigenvector component in the

structural health state at the & analysis step.

In addition, the relative entropy index can be obtained by the principal component analysis of the
strain data after the energy decomposition of the wavelet packet. That is, the principal component
score matrix of the energy strain data obtained from different measuring points and the data from
other measuring points can be obtained by the principal component analysis, and the relative
entropy value (RE) of the matrix can be extracted as the local damage characteristics of the
measuring point.

4
where WES, ; represents the wavelet packet energy strain in the J band of the measuring point i,
k represents the response data point, and N represents the sampling number in this period.

2.2 Damage identification framework based on PSO-SVM

PSO is a robust and efficient algorithm that constantly updates the position and velocity of each
particle to find an optimal solution. The core of SVM model is to determine the weight vector and
scalar threshold of the mathematical structure of the model, so that the error of the model
expression in the data set is minimized, and the maximum margin is taken as the most effective
classification solution. Basically, the ideas are generalized in the following equation.
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where X is the input vector, @ is weight vector, b is scalar threshold, € > 0 is error-insensitive
2 . .
zone and ||a)|| = <a) . a)> is the norm of the weight vector.

Firstly, the original strain signal is decomposed into different frequency components by wavelet
packet energy transformation, and the energy information at each frequency component is obtained
to form the wavelet packet energy vector. Then, the wavelet packet energy signal and the original
signal are reduced by principal component analysis and the main features are extracted. The damage
mode of the composite plate is identified based on the relative entropy and the feature vector
modulus length. The selected features are taken as the input of the training model, SVM classifier is
established, and the recognition results are output. In order to improve the recognition accuracy of
the classifier, PSO algorithm was applied to optimize the model parameters, and the model was
tested by randomly extracting data according to the damage location and damage grade.

Table 1 shows the model impact factors of different machine learning models for analysis.

Table 1. General model factors applied.

Model name Model factors
BP Hidden layer nodes=12, training times=1000, learning rate=0.01
C1=2, C2=2, population =12, hidden layer nodes=12, training times=1000,
PSO-BP . -~
learning rate=0.01
PSO-SVM Cl1=1.5, C2=2.5, population=12, maximum Iteration=200, Radial basic kernel

function

3. Experimental study and result discussion

3.1 Numerical example and results

Taking composite material board as an example, finite element simulation platform was used for
simulation, and its parameters were set as shown in Table 2 and Table 3.

Table 2. Finite element simulation setup.

Category Specific parameter
Model size 400mm X 300mm X 2mm
Lay-up mode [0°/90°/0°/90°/0°/90°/0°/90°/0°/90°/0°]
Boundary condition One narrow side is fixed, the other side is free

Cell type Shell281

Unit partition Divide 40 units in the x direction and 30 units in the ydirection
Damage element coordinate Unit @ (17,6), Unit % ((22%,61)7:)[,}{}1125@@(1(‘;:71,‘;)4:)Un1t @ (22,15), Unit

Loading load Force hammer load, as shown in Figure 2

The damage simulation of composite materials is based on the stress description, and both the
additional mass and the through hole can cause local stress concentration, and both can lead to local
stiffness reduction.
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The simulated strain data were used to construct datasets M1 and M2 with a sampling frequency
of 2.56khz, 12 sampling points, and each sampling time of 5s. M1 data set is in lossless working
condition, M2 data set is in lossy working condition.

Fig. 3 respectively shows the changes of three characteristic indexes of each measuring point
under the damage state of unit 4. It can be seen that the damage unit @) can cause the mutation of
the three indicators at the measuring point of the area where the damage is located, so as to identify
whether there is damage in the area. Among them, (a) The figure shows that both the RE value and
the RE difference have mutations at test point 4, At the same time (b) Figure shows that the
modulus length of the feature vector difference vector increases after the damage occurs, and there
is an obvious threshold, (c) It can be seen that DAEV index can effectively distinguish damaged
units.
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Fig 3. Simulation data verification results of three indexes

3.2 Test and results

During the test, the composite plate is randomly excited by the exciter, and the strain data of 12
measuring points are finally collected by the DH5922N signal acquisition system through the
adapter, the frequency sweep signal generator and signal amplifier. The schematic diagram of the
test device is shown in Fig 4. The input database was composed of 240 sets of data containing
random damage locations and damage grades. To avoid overfitting of the model, the database was
randomly divided into 168 groups for training and 72 groups for testing. The damage rating is
divided into seven levels, as shown in Table 3 below. The damage locations were evenly distributed
among 12 units. Each set of data contains a total of 37 eigenvector values of the three indicators, in
which RE contains 12 measurement point values, DAEV contains 12 measurement point values,
and the difference vector modulus length contains 13 values.
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Table 3. Mass block quality grade
Mass block grade I II 1 v v VI VII
Mass block mass/g 3.56 4.62 5.58 7.22 10.28 12.48 14.26
Different ML models such as BP, PSO-BP and PSO-SVM are trained for classification and
prediction. The results of training and testing using BP and PSO-BP neural network are shown in
Fig 5. The optimal cycle of BP neural network is 15, and the optimal cycle of PSO-BP is 8. PSO-
BP has a better performance than BP.
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Fig 5. Training and testing BP Neural Network and PSO-BP for the Composite plate

Fig 6 plots several different input features of PSO-SVM (12, 24, 25, 36, 37) and their
performance. The optimal number of features is 24, and the performance of input parameters (37
features) is worse than that of 24 input features. The analysis shows that particle swarm
optimization can effectively eliminate redundant parameters and noise, and improve the

performance of the model through powerful search function.
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Fig 6. Training with the PSO-SVM for the Composite plate

Table 4 and Table 5 show a comparison between the classification results of these machine
learning models. As can be seen, PSO-SVM shows higher accuracy in these machine learning
models. The accuracy of BP and PSO-BP for damage location classification in the test set were
73.6111% and 79.1667%, and RMSE were 0.2846 and 0.19493, respectively. It can be seen that the
performance of the two neural network models is not ideal. Meanwhile, the accuracy of the above
two methods for judging the damage degree of the test set is 61.112% and 69.444%, and the RMSE
is 0.36221 and 0.34836, respectively. In contrast, the accuracy of the PSO-SVM model for the
classification prediction of damage location and damage grade of the test set is 97.222% and
81.944%, respectively, which is higher than other ML models.

Table 4. Comparison of training and testing results of different ML models for damage

locations.
BP PSO-BP PSO-SVM
Model
RMSE Acc RMSE Acc RMSE Acc
Training set result 0.09382 | 0.91071 0.08831 [ 0.95238 | 0.05357 | 0.99404
Test set result 0.28460 0.73611 0.19493 0.79166 | 0.08285 0.97222

Table 5. Comparison of training and testing results of ML models with different damage

levels.
BP PSO-BP PSO-SVM
Model
RMSE Acc RMSE Acc RMSE Acc
Test set result 0.36221 061111 0.34836 0.69444  0.18381 0.81944

4. Summary

Based on the results and discussions presented above, the conclusions are obtained as below:

(1) The optimal number of features of the composite structure is 24/37, indicating that the input
database contains a large number of redundant or noisy parameters. The proposed PSO-SVM can
effectively determine the optimal input features and eliminate redundant and noisy data.

(2) Compared with BP and PSO-BP models, PSO-SVM model showed excellent performance,
mainly in the classification and prediction of damage location and damage degree (the accuracy of
classification and prediction of damage location and damage grade were 97.22% and 81.94%,
respectively), while other ML models were not ideal in the prediction of damage degree.
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