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Abstract. In view of the background that customs use flexible manipulator to perform remote
dangerous goods detection operations, this paper proposes an adaptive RBF control method based
on the definition of nonlinear robot system and predetermined time stability to meet the
requirements of customs robot remote operation tasks. The design of the adaptive RBF controller
can compensate for the uncertainties in the robot dynamics, and the adjustable parameters make
the design of the control system more flexible, ensuring accurate tracking control in the presence of
system model uncertainty and disturbances. The Lyapunov method is used in this research to
demonstrate the stability of the control system, and robot tracking control simulation and
experimentation are used to confirm the efficacy of the aforementioned approach.
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1. Introduction
With the acceleration of globalization, the number of cross-border goods is increasing.

Traditional manual inspection methods often cannot meet the dual needs of safety and efficiency.
Therefore, introducing robotics technology into the field of dangerous goods inspection, especially
through remote operation, has become an innovative and effective solution. Remote operation can
significantly improve safety. When conducting dangerous goods inspection, potential risks and
uncertainties are often worrying. By using robots for remote operation, customs officers can
monitor and control robots in a safe environment and avoid direct contact with possible dangerous
substances. Therefore, the motion control of robots needs to be fast and accurate to ensure efficient
completion of operational tasks.

Sliding mode control has strong robustness and anti-interference ability [1-9] and has been
widely used in trajectory tracking of nonlinear systems, but there will be obvious jitter phenomenon.
Since the convergence time of these sliding mode control methods cannot be determined in advance
by calculating the control parameters, they are usually called finite time control methods. To this
end, several predetermined time stable control systems are studied. Zhang et al. proposed a new
robust scheduled time tracking control method for the global tracking control problem of robots
with uncertainty and external disturbances [10]. Aldo et al. designed a scheduled time stabilization
dynamic controller based on the inherent passivity of the robot dynamic structure [11]. Jia et al.
proposed an adaptive scheduled time SMC for nonlinear systems, which can accelerate the
convergence speed of the system [12]. The introduction of these methods has promoted the
development of tracking control with time constraints. Traditional robust control cannot select the
stable time as an accurate control parameter. Therefore, it is meaningful to study a simple and
robust scheduled time tracking control method.

This paper combines the scheduled time stability theorem with the adaptive RBF sliding mode
control algorithm, and designs a new sliding surface and controller on this basis, which can ensure
that the customs robot system can complete the operation task quickly and accurately within the set
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scheduled time. The stability of the robot system under the action of the scheduled time and
adaptive RBF controller is proved by Lyapunov function.

2. Preparation
2.1 Predetermined time Stability

For predetermined time constants  aT ， The origin of a system  x f x is referred to as

fixed-time stable if both the stable time function and it are fixed-time stable :   nT R R The
following conditions are met:

0 0( )  , .naT x T x   (1)

If the above conditions are met, aT is called the predetermined time.
For a system, if there satisfies the following conditions:
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After that, the system is stable for the specified amount of time. 0cT  is the predetermined
time and 0 1, , 0.n   

2.2 Robot dynamics model
The robot system is described by the Euler-Lagrangian form as follows:

     ,H q q C q q q G q d      (3)

Among them,
1, , nq q q    indicates the generalized joint coordinates' angular position, angular

velocity, and angular acceleration.;   n nH q  symbolizes the matrix of positive definite inertia;
 , n nC q q   is Coriolis and centrifugal torque impacts of matrix;   1nG q  symbolizes the

gravity effects vector;
1n is the input torque vector;

1nd  represents the internal
uncertainty and the bounded external disturbance vector.

Taking into account the uncertainty components of the model itself, the following equation is
defined:
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   (4)

The dynamic equations are expressed as follows:
     ,i i i iH q q C q q q G q d      (5)

The following Jacobian matrix AJ is ​ ​ used to transform from joint space to workspace, that

is,
1,A A A Ax J q x J J x J q        .is further written as:

     ˆ ˆˆ ,i i x dH q x C q q x G q F F   
 

   (6)
In:
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3. Sliding surface and controller design
In order to achieve the predetermined time stability by sliding mode, this paper designs the

following sliding surface:

 n n

c

s
nT

 
  

    
 


(8)

Wherein, dx x  is the position tracking error, dx is the expected value of x ,
 0,1n and  0,1 ,  0,1 , 0. cT are the predetermined times.

Theorem 1: If a sliding surface (8) is used by the error system , it converges to zero within a

predetermined time cT .

Proof: When the sliding surface has a position error
  ( ) 0S t s  

, therefore:
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A new variable P is introduced in the controller and expressed as follows:

 n n

d
c

P x
nT

    




 
   (11)

In the sliding plane, the equation (5) is expressed as follows:

         ˆ ˆ ˆˆ ˆ, ,i i i i i x dH q s C q q s H q P C q q P G q F F     
       (12)
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Among them, w is the weight matrix of RBFNN, ( )x is its foundational role. The input x is a

multidimensional vector:  d d dx x x x x x    .

If the estimated value of RBFNN is expressed as ˆ ( )T
dF w x  , then the estimated error value

can be expressed as ˆw w w  . In this way, the adaptive expression of the weight can be obtained

as  ˆ Tw w x s    . Among them,  is a diagonal matrix that is positive definite, the following
Lyapunov function is established:

   11 1ˆ
2 2

T T
iV s H q s tr w w 
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  (14)
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
, 0 1  .

For the above equation(14), we can get:
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Combined with the properties of the robot system,    ˆˆ 2 ,i iH q C q q


 represents the
antisymmetric matrix, we can get:
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According to equation (16) and  0 , 1, 0,1n    , we can conclude that Theorem 1 is
satisfied and the predetermined time stability of the position error can be promised within the given
predetermined time .

4. Numerical simulation
The tracking performance is compared to the current robust control approaches using the

following two-DOF robot model. The dynamic model used by the robot in the simulation is as
follows:
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The following are the robot's settings. The iM value of .i i iM B L  is We take

 1 2 3 4 5, , , , T
iM M M M M M

，  1 2 3 4 5, , , , T
iB B B B B B

，
2 2

1 2 1 2 1 2, , , ,
T

iL l l l l l l    , 1 2 1l l  as the

length of the corresponding joint, where iB is the execution parameter variable of the robot

manipulator. We consider   20.5, 1.66,0.42,0.63,3.75,1.25 , 9.8 /T
iB g N s   .

0.6cT  , 0.3 , 0.9 , 0.5n  . The expected trajectory is set to
 1 0.2*cos( ) 1 0.2*sin( )t t   , Joints 1 and 2 have their starting positions set to 0.83 and 1.08.

Fig.1 The x1 axis trajectory tracking Fig.2 The x2 axis trajectory tracking

Fig.3 Input torques of the joint in the paper Fig.4 Sliding mode surface under different
predefined-time

From Figure 1 and Figure 2, we can see that stable and accurate tracking can be achieved within
the scheduled time of 0.6s. Figure 3 is the control input result of the scheduled time sliding mode
control, and Figure 4 is a comparison of the duration required to arrive at the sliding surface under
different scheduled times. In summary, it can be concluded that the new scheduled time sliding
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mode control scheme proposed has faster convergence speed, shorter convergence time, and better
robustness.

5. Conclusion
For the customs robot remote control system, this paper designs a scheduled time adaptive RBF

sliding mode controller based on the definition of nonlinear multi-joint manipulator system and
scheduled time stability to resist the interference of model uncertainty and external disturbances and
achieve precise tracking control. Through numerical simulation and real robot experiments, it can
be concluded that the control method designed in this paper has a faster convergence speed and
shorter convergence time, and this simultaneously confirms the viability and efficiency of the
control strategy put forward in this research.
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