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Abstract. Accurate radiation distribution could provide solid guidance for the protection of both
occupational workers and the public. However, in some cases , such as nuclear accident, it is still
hardly to obtain high accurate radiation distribution over the entire concerned region via numerical
calculation due to complex geometry and/or radiation sources. In these cases, the radiation field
reconstruction technique based on the limited measured and/or calculated radiation results has
attracted more and more attention. In this work, an forward neural network (FNN) framework
consisting of two fully connected layers connected by several residual blocks was proposed to study
the reconstruction for 3D radiation with typical shielding layout including bulk shielding and
streaming. With the help of the idea of piece-wise functions, a good prediction accuracy was
achieved by dividing the entire zone into small training zone based on the magnitude of dose. The
fraction of relative deviation between predicted and Monte Carlo results within 20% were 80.7% and
90% for bulking shielding case and the streaming case, respectively.

Keywords: radiation fields, shielding, dose, reconstruction, FNN.

1. Introduction
Radiation safety is widely considered as one of major bases of the development of nuclear

energy and nuclear technology. The radiation distribution as detail as possible for the accessible
area around nuclear facility can provide solid guidance for the protection to both occupational and
public. The radiation distribution can be obtained by equipment measurements and numerical
simulations. However, as the equipment is usually deployed at limited and sparse measurement
positions in practice, it’s hardly to present the detail 3D radiation field via radiation monitoring.
With the continuous development of particle transport solving algorithms (such as discrete ordinates
method, Monte Carlo method) and computer technology, more and more advanced particle
transport codes with parallel computing capabilities, such as MCNP[1], Serpent[2], OpenMC[3],
NECP-MCX[4], JMCT[5], RMC[6],SCALE[7],PARTISN[8] and so on, have been developed.
High-fidelity radiation distributions could be achieved by those tools in the condition of accurately
modeling for geometry and radiation sources. However, in some cases, such as nuclear accident and
hands-on operation during nuclear facility decommissioning and decontamination, it is still hardly
to obtain high accurate radiation distribution with these codes due to the fact that it is difficult to
accurately model the complex radiation source terms and/or geometry.In these cases, the radiation
field reconstruction technique based on the limited measured and/or calculated radiation results has
attracted more and more attention.

In general, these reconstruction techniques are based on interpolation algorithm or neural
network model. Sai et al. (2016)[9] used multiquadric scattered data interpolation technique in
gamma radiation field visualization. Wang et al proposed a method based on net function
interpolation (2018)[10] and further developed it with Bayesian inference to reconstruct the neutron
dose field (2020)[11]. Although above methods achieved good agreements between predictions and
calculations, they only focused on the 2D radiation distribution. Zhu et al. (2022)[12] proposed a
method using the modified Cahn-Hilliard equation to reconstruct 3D gamma dose field for radiation
single source case. This method shows good agreement away from the source, but higher deviations
near the source. Zhou et al. (2021)[13] developed an adaptive Back-propagation (BP) neural
network method based on learning rate decay and applied it to reconstruct 2D photon flux and dose
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distribution in a simple geometry model. Hao et al. (2023)[14] proposed an five-layer MLP network
to reconstruct 3D photon radiation distribution in a simple geometry model.

In this work, the reconstruction of 3D radiation field for typical shielding layout (such as bulk
shielding, streaming cases with forward neural network (FNN) will be studied. In the following
sections, Section 2 will introduce the method of data preparation and neural network mode, and
Section 3 will present the results and analysis for both single and multiple source cases.

2. Methodology
2.1 Date set preparation

In this work, the neutron dose distributions in a hypothetical plant with typical shielding layouts
were calculated by the high-fidelity particle transport simulation based on Monte Carlo (MC)
technique which can handle any complex geometry and employ the nuclear cross-section data
without any severe approximations, to be used for neural network training and validation. In dose
distribution simulation, an open source MC-based particle transport code OpenMC developed at
MIT was used together with ENDF/B-VII.1[15] nuclear cross section library and the
fluence-to-dose conversion factors from ICRP 74[16]

The hypothetical plant consists of two rooms, as shown in Fig. 1. A shielding chamber with the
concrete walls (0.2m thickness in west and east, 0.1m thickness in south and north), located at the
northeast corner of the Room A, is used for studying the bulk shielding effect. On the south wall of
the shielding chamber, a square hole with dimensions of 10cm by 10cm (1 meter above the ground)
is opened to simulate the leakage beam effect caused by hole penetrating parts and other similar
effects.

Fig. 1 Layout of hypothetical plant

2.2 Neural network model
In machine learning, the radiation field reconstruction technique can be classified as a regression

problem. Therefore, a framework based on FNN was built in present work. The framework is
composed of two fully-connected (FC) layers connected by several residual blocks, as shown in
Fig.2. To avoid gradient vanishing during backward propagation, the shortcut in residual block will
be activated only when the hidden layers (e.g. the number of res blocks) is greater and/or equal 10.
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To improve the flexibility of framework, the model layers and number of nodes in each layer can be
specified by the user.

Fig. 2 Framework of network for reconstructing 3D radiation field

The hyperbolic tangent function (e.g. tanh(x), as shown in Fig. 3), which transforms the inputs to
outputs lie on the interval (-1,1) and approaches a linear transformation around zero input, is used as
activation function in the res block. As shown in Fig. 3, as tanh(x) varies slowly within range of
|x| > 2 (in other words, the derivative of the tanh function approaches 0 in this interval), both the
inputs (e.g. spatial coordinates) and labels (e.g. doses) are pre-pocessed with Z-score normalization,
which transforms the data set x n

n=1

N
to the data set with mean of zero and variance of one, as

following
x�(n) = x n −μ

σ
(1)

where
μ = 1

N n=1
N x n� (2)

σ2 = 1
N−1 n=1

N x n − μ
2

� (3)
The weights of model are initialized with Xavier method instead of default method (Kaiming

Uniform)

Fig. 3 Swish(x) and Tanh(x) and their first derivative

And the Adam optimization with learning rate of 1.0e-4 was adopted, and to suppress the over-fit
effect as soon as possible, L2 regularization was used

3. Results and Analysis
In present work, a isotropic cuboid source with size of 21.42 cm and height of 1.5 m was

deployed at the center of shielding chamber.
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3.1 Case 1: bulk shielding

To study only bulk shielding, the streaming in the model described in Section 2.1 were neglected.
The radiation field data calculated by MC code with this modified model was used to train and
validate neural network.

Previous studies show the selection of train data has great effectiveness on the prediction ability
of network. Thus, to improve the generation ability of network, the principle for selecting train set
samples is to make the data distribution feature on train set and validation set as close as possible.
In this work, with the bottom center of radiation source as origin of R-Z-Theta coordinate system,
several points randomly were sampled in theta of and z along the different radius as train set, as
shown in Fig. 4. The remain data belong validation set

Fig. 3 Spatial distribution of coordinate of samples in train set

Based on the above train set and validation set, we initially tried to build a deep neural network
which has good predicted ability on the whole plant space. However, it was found the fraction of
relative deviation within 20% between the predicted and MC results hardly exceeds 50% and the
predicted data only around the source shown good agreement with the MC results, although the
layers of network is 9 and total nodes is as high as 10272.

Considering that a deeper neural network may result in the potential over-fitting effect, with the
help of the idea of piece-wise functions, we divided the entire space into a number of small regions
and use a smaller-scale neural network to reconstruct each small region. With this method, for bulk
shielding case, a 7 layers network with the nodes of 200 and a 7 layers network with the nodes of
4500 were built to reconstruct the field in the shielding chamber and the remain space, separately.
About 82.7% of fraction of relative deviation within 20% over the entire space was achieved, as
shown in Table 1. The comparison of radiation field distribution was presented in Fig.4, showing a
good agreement between predicted and MC results. Besides, it can be also found that the larger
deviations occur where the dose is smaller, indicating that predicted accuracy could be further
improved by dividing more sub-train zones.
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Table 1. Summary of network for reconstructing radiation fields in bulk shielding case

Target Zone Structure of
network

Train set Validation set Entire space

Samples
Fraction

of
∆≤20%

Samples
Fraction

of
∆≤20%

Samples
Fraction

of
∆≤20%

Shielding
chamber 50,40,30,30,2

0,20,10 493 0.94 10508 0.91

Remain
space

100, 200, 500,
1000, 2000,
500, 200

2993 0.88 160195 0.82

175188 0.827
∆=abs(P-C)/C, where C stands for MC calculated , P stands for predicted.

Fig. 4 Comparison of MC results and predicted for bulk shielding

3.2 Case 2: streaming
In this case, to study the reconstruction for radiation field with streaming, a square hole was

opened at the southern wall of the shielding chamber, as shown in Fig.1. With the same network
structure and spatial partition policy as the Case 1, the accuracy in this case is not as good as the
result of Case 1. The results are listed in Table 2 and the distribution comparison are present in the
Fig.5.
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Table 2. Summary of network for reconstructing radiation fields in streaming case

Target
Zone

Structure of
network

Train set Validation set Entire space

Samples Fraction of
∆≤20%

Sample
s

Fraction of
∆≤20% Samples Fraction of

∆≤20%
Shieldin

g
chamber

50,40,30,30,
20,20,10 493 0.95 10508 0.90

Remain
space

100, 200,
500, 1000,
2000, 500,

200

2993 0.85 158455 0.75

168963 0.759
∆=abs(P-C)/C, where C stands for MC calculated , P stands for predicted.

Fig. 5 Comparison of MC results and predicted for bulk shielding and streaming(2 training areas)

We think that the model complexity increases after the streaming region is added, and training
outside the radiation source room as a whole will make the fitted function more complex, resulting
in lower training effect than case1. Therefore, we further divide the region outside the radiation
source room into two smaller regions: Radiate the area due south of the room and the rest of the
area,as shown in the Fig 6. Using this method, the regions with large changes in radiation
characteristics are divided, and the predicted results are shown in Table 3
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Fig. 6 Case where streaming is divided into three regions

Table 3. Summary of radiation field divided into three regions in streaming case

Target
Zone

Structure of
network

Train set Validation set Entire space

Samples Fraction of
∆≤20%

Sample
s

Fraction of
∆≤20% Samples Fraction

of ∆≤20%

Area A 50,40,30,30,20
,20,10 493 0.96 10508 0.916

Area B
100, 200, 500,
1000, 2000,
500, 200

2993 0.85 131615 0.807

Area C 50,40,30,30,20
,20,10 493 1 27348 0.994

169305 0.844
∆=abs(P-C)/C, where C stands for MC calculated , P stands for predicted.
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Fig. 7 Comparison of MC results and predicted for bulk shielding and streaming(3 training areas)

In addition, it can be seen from Fig 5 and Fig 7 that a large part of the area causing prediction
errors stems from the northwest direction of the model, because it is far away from the radiation
source and receives the effect of absorption and reflection from the wall, so the radiation dose value
changes more complicated. If the prediction ability of this region can be improved, then the overall
prediction ability of FNN can be further improved.

With idea of sub-regional training, Room B was further divided into two sub-regions, as shown
in Fig 8. The radiation results predicted by this segmentation method are shown in Table 4 and Fig
9.
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Fig. 8 Case where streaming is divided into four regions

Table 4. Summary of radiation field divided into four regions in streaming case

Target Zone Structure of
network

Train set Validation set Entire space

Samples Fraction of
∆≤20%

Sample
s

Fraction of
∆≤20% Samples

Fraction
of

∆≤20%

Area A 50,40,30,30,
20,20,10 493 0.96 10508 0.916

Area B

100, 200,
500, 1000,
2000, 500,

200

2993 0.9 105655 0.85

Area C 50,40,30,30,
20,20,10 493 1 27348 0.994

Area D 50,40,30,30,
20,20,10 493 1 27708 0.994

171219 0.9
∆=abs(P-C)/C, where C stands for MC calculated , P stands for predicted.
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Fig. 9 Comparison of MC results and predicted for bulk shielding and streaming(4 training areas)

4. Summary
This work investigates a neural network-based methodology for reconstructing 3D radiation

fields in nuclear facilities with limited measurements. The study utilizes Monte Carlo simulations to
generate neutron dose distributions for training and validating the forward neural network (FNN).
The FNN incorporates residual blocks and advanced optimization techniques to mitigate gradient
vanishing and overfitting. During training, it was found that the deeper neural networks didn’t work
well in predictions accuracy. Based on the idea of piece-wise function, dividing the entire space into
a number of small regions and using a smaller-scale neural network to reconstruct each small region
can achieve good results in the whole space. The reconstructions for radiation fields of two typical
shielding layout including bulk shielding and streaming were performed. In bulk shielding case, by
dividing the radiation field into two sub-regions, the fraction of relative deviations within 20% for
entire space was achieved 82%. In the streaming case, further subdivision of regions reduces
prediction complexity and improves accuracy in areas with significant radiation variations,the
overall accuracy was more than 84% when the deviation was less than 20 percent. For the area with
large deviation, it is further divided into independent zones, reaching 90% accuracy over entire
space. The results highlight the efficiency of the FNN framework in handling complex radiation
fields and provide a foundation for its application in nuclear safety assessments and accident
responses.

In the future, the reconstructions for 3D radiation fields with more shielding layout such as maze,
shadow shielding will be studied. And the network structure could be further optimized.
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