
Advances in Engineering Technology Research IBCEE 2025
ISSN:2790-1688 Volume-13-(2025)

807

Research on Mistake Analysis and Personalized Learning
Feedback System Based on the Qwen2 Model

Jianlin Wang1, a, Wenli Zhang1, b, Ge Zhang1, c, *, Yangkang Wei1, d, Ke Xu1, e
1School of Computer and Information Engineering, Henan University, Kaifeng, Henan 475000

a jlwang@henu.edu.cn, b z15538157651@163.com, c zhangge@henu.edu.cn, dwyksean@163.com,
e xukeke@henu.edn.cn

Abstract. This study developed a mistake analysis and personalized learning feedback system
based on the Qwen2-7B model. Through LoRA technology fine-tuning, the system achieves
efficient mistake analysis and the generation of learning suggestions. Experimental results show
that students using this system improved their average scores by 13.4 points over 8 weeks,
significantly outperforming the control group. The system's mistake analysis accuracy reached 87%,
with a user satisfaction rate of 92%, and it can stably handle 2000 concurrent user accesses. The
research results provide innovative solutions for the field of intelligent education and demonstrate
the application potential of large language models in personalized education.

Keywords: Qwen2 model; mistake analysis; personalized learning; LoRA fine-tuning.

1. Introduction
The rapid development of artificial intelligence technology has brought revolutionary

opportunities to the education sector, with large language models demonstrating significant
potential in intelligent education. Traditional educational methods struggle to achieve personalized
learning and precise feedback[1]. To address this issue, this study proposes a mistake analysis and
personalized learning feedback system based on the Qwen2-7B model. This system utilizes deep
learning technology to accurately analyze students' types of mistakes and provide targeted learning
suggestions, thereby improving learning efficiency and effectiveness. This paper will detail the
system's design concept, technical implementation, and experimental evaluation, exploring the
prospects and challenges of large language models in intelligent educationp[2]. Through this
research, we aim to provide new ideas and practical experiences for the development of intelligent
education systems, promoting the advancement of personalized learning and precise education.

2. System Design and Method
2.1 Overall System Architecture

This study designed a mistake analysis and personalized learning feedback system based on the
Qwen2-7B model. The system architecture includes five main modules: data preprocessing, model
fine-tuning, mistake analysis, learning suggestion generation, and user interaction, as shown in
Figure 1. The data preprocessing module is responsible for cleaning and formatting students'
answering data. The model fine-tuning module uses LoRA technology to fine-tune Qwen2-7B to
suit specific educational tasks. The mistake analysis module receives students' answering
information and generates a detailed error analysis report[3]. The learning suggestion generation
module provides personalized learning suggestions based on the error analysis and students'
learning history. The user interaction module offers an intuitive interface for students to input
answering information and view feedback. The system adopts a distributed architecture to ensure
high concurrency processing capability and data security.



Advances in Engineering Technology Research IBCEE 2025
ISSN:2790-1688 Volume-13-(2025)

808

Figure 1: Overall System Architecture

2.2 LoRA Fine-Tuning of the Qwen2-7B Model
This study employs LoRA technology to fine-tune the Qwen2-7B model to enhance its

performance in the education sector. LoRA achieves efficient parameter updates by adding
low-rank matrices to the attention layers of the original model, which can be represented as follows:
W' = W + BAwhere W is the original weight matrix, and B and A are low-rank matrices. The
loss function for the fine-tuning process can be expressed as follows: L =
CrossEntropyLoss(y, f(x; θ + ΔW))where θ is the original model parameters, and ΔW is
the parameter update introduced by LoRA. By optimizing hyperparameters such as learning rate,
batch size, and number of training epochs, the final fine-tuned model demonstrates excellent
performance in mistake analysis and learning suggestion generation tasks, with significantly
improved accuracy[4]. This method not only greatly reduces the required computational resources
but also maintains the model's generalization capability.

2.3 Design of the Mistake Analysis Module
The mistake analysis module is one of the core components of the system, responsible for

in-depth analysis of students' incorrect answers. This module receives students' answering
information, including the questions, students' answers, and the correct answers. First, the module
uses the fine-tuned Qwen2-7B model to perform a preliminary analysis of the students' answers,
identifying potential types of errors. Then, the module matches this information with a predefined
library of error types and knowledge points to determine the specific error type and relevant
knowledge points. Based on these analysis results, the module generates a detailed error report that
includes an error description, the reason for the error, and the knowledge points involved[5]. To
improve the accuracy of the analysis, the module also incorporates a feedback mechanism that
allows teachers to correct and supplement the analysis results, thus continuously enhancing the
model's analytical capabilities.

2.4 Design of the Personalized Learning Suggestions Generation Module
The personalized learning suggestions generation module utilizes the fine-tuned Qwen2-7B

model to provide targeted guidance for students. This module integrates the results of mistake
analysis and students' historical learning data to generate preliminary suggestions and optimize the
content of the suggestions through a dynamic adjustment mechanism. The core functionality of the
module can be represented by the following formula: Advice =
f(ErrorAnalysis, LearningHistory, θ)where f is the function of the fine-tuned model and θ
represents the model parameters. The dynamic adjustment process can be expressed as follows:
AdjustedAdvice = g(Advice, Feedback, Progress) where g is the adjustment function that
considers student feedback and progress. This method ensures the personalization and adaptability
of learning suggestions, ultimately presenting them to students and teachers in an easily
understandable and actionable form, effectively enhancing learning outcomes.

2.5 User Interface and Interaction Design
The user interface and interaction design module aims to provide students and teachers with an

intuitive and user-friendly operational experience. This module employs a responsive design to
ensure that it displays well on different devices. As shown in Figure 2, the student interface



Advances in Engineering Technology Research IBCEE 2025
ISSN:2790-1688 Volume-13-(2025)

809

primarily includes a question input area, an answer submission area, a mistake analysis display area,
and a learning suggestions display area. The question input supports multiple methods, including
text, images, and voice, allowing students to quickly enter question information. Mistake analysis
and learning suggestions are presented visually, utilizing charts and animations to enhance
understanding. Additionally, the interface integrates progress tracking and learning plan functions
to help students systematically improve their learning. The teacher interface provides features for
class management, student performance analysis, and teaching resource management. The overall
interface design focuses on smooth interactivity and clarity of information, striving to provide users
with a positive experience.

Figure 2: User Interface Layout

3. System Implementation
3.1 Development Environment and Technology Stack

The development environment for this system is based on the Ubuntu 20.04 LTS operating
system, with Python 3.8 as the primary programming language. Core model training and inference
utilize the PyTorch 1.9.0 framework, combined with the Hugging Face Transformers 4.11.3 library
to implement loading and fine-tuning of the Qwen2-7B model. For data processing, Pandas 1.3.3
and NumPy 1.21.2 are used for efficient data manipulation. The backend service employs the Flask
2.0.1 framework to provide a RESTful API interface. MongoDB 5.0 is selected as the database for
storing user data and learning records. The frontend interface is developed using the React 17.0.2
framework, integrated with the Ant Design 4.16.13 component library to achieve a responsive
design. Version control is managed using Git, with collaboration on GitLab. The entire system is
deployed in Docker containers, utilizing Kubernetes for container orchestration and management,
ensuring the scalability and stability of the system.

3.2 Data Processing and Model Fine-tuning
During the data processing phase, data was collected from 100,000 math test papers across 50

high schools, comprising approximately 500,000 questions and their answers. Python scripts were
used to clean and standardize the data, removing invalid or duplicate samples, resulting in 450,000
valid data entries. The dataset was split into training, validation, and test sets in a ratio of 7:2:1. In
the model fine-tuning phase, the LoRA technique was employed for adaptive training of the
Qwen2-7B model[6]. During fine-tuning, the learning rate was set to 2e-5, the batch size was 16,
and the number of training epochs was 3. On the validation set, the fine-tuned model improved the
accuracy for the mistake analysis task from a baseline of 72% to 89%, and the BLEU score for the
learning suggestion generation task improved from 0.31 to 0.47. The final results on the test set
showed that the accuracy for mistake analysis reached 87%, and the BLEU score for learning
suggestion generation was 0.45, demonstrating significant improvements over the baseline model,
as shown in Table 1.

Table 1: Comparison of BLEU Scores for Learning Suggestion Generation Task
Dataset Base BLEU Score Fine-tuned BLEU Score

Validation Set 0.31 0.47
Test Set 0.31 0.45



Advances in Engineering Technology Research IBCEE 2025
ISSN:2790-1688 Volume-13-(2025)

810

3.3 Implementation of Core Functional Modules
The implementation of the mistake analysis module adopts a combined approach of rule-based

and machine learning methods. First, regular expressions and natural language processing
techniques are used for preliminary analysis of student answers to extract key information. This
information is then input into the fine-tuned Qwen2-7B model to generate detailed error analyses.
The model output undergoes post-processing to match a predefined error type library, ultimately
generating a structured error report. The learning suggestion generation module employs
collaborative filtering algorithms and knowledge graph techniques, combining the results of the
mistake analysis with historical learning data to create personalized learning suggestions[7]. This
module also implements a dynamic adjustment mechanism to update suggestion content in real-time
based on the student's learning progress. Performance testing shows that the average response time
of the mistake analysis module is 1.2 seconds, with an accuracy of 87%. The average response time
of the learning suggestion generation module is 0.8 seconds, with a user satisfaction rating of 4.5/5,
as shown in Figure 3.

Figure 3: Response Time

3.4 System Integration and Deployment
System integration adopts a microservices architecture, encapsulating core functional modules

such as mistake analysis and learning suggestion generation as independent services. Docker
containerization technology is used to create separate containers for each service, ensuring
environmental consistency and deployment flexibility. Kubernetes is utilized for container
orchestration, achieving automatic scaling and load balancing of services. The system is deployed
on an Alibaba Cloud server cluster, consisting of 3 master nodes and 5 worker nodes, with a total of
32 CPU cores and 128GB of memory. A blue-green deployment strategy is employed to ensure zero
downtime during system updates. Prometheus and Grafana are introduced for real-time monitoring
and log analysis, achieving an average service availability of 99.95%, as shown in Figure 4. Load
testing indicates that the system maintains an average response time of less than 1.5 seconds under
100 concurrent requests per second[8]. Optimization measures such as CDN acceleration and
database read-write separation further enhance system performance and user experience.

Figure 4: Availability

4. Experiments and Evaluation

4.1 Experimental Setup
In this experiment, 1,000 high school students from five different regions were selected as test

subjects, with an age range of 15 to 18 years. The experimental period lasted for 8 weeks, during
which students used the system 3 to 5 times per week, with each session lasting approximately 30



Advances in Engineering Technology Research IBCEE 2025
ISSN:2790-1688 Volume-13-(2025)

811

minutes. The experimental group used the system for mistake analysis and learning, while the
control group employed the traditional paper-based mistake book method. Both groups underwent a
mathematics ability test before and after the experiment, covering five major modules: sequences,
functions, geometry, and so on, with 20 questions in each module. The system recorded data on
students' usage frequency, number of mistakes, learning duration, and more. To evaluate system
performance, three load tests were conducted during the experiment, simulating 500 to 2000 users
online simultaneously. User experience was collected through a questionnaire assessing ten
dimensions, including system usability, response speed, and relevance of suggestions, using a
5-point Likert scale. Experimental data were statistically analyzed using SPSS 26.0, with a
significance level set at 0.05.

4.2 Quality of Mistake Analysis and Learning Suggestions
The quality assessment of mistake analysis employed a combination of manual labeling and

automatic evaluation methods. A random sample of 5,000 student mistakes and the analysis results
generated by the system were evaluated by five experienced mathematics teachers, using
dimensions such as accuracy of analysis, clarity of explanations, and relevance of suggestions, each
rated on a scale of 1 to 5[9]. The results showed that the average scores were 4.2 for analysis
accuracy, 4.3 for clarity of explanations, and 4.1 for relevance of suggestions, as shown in Table 2.

Table 2: Quality Scores for Mistake Analysis
Rating Dimension Average Score (1-5)
Analysis Accuracy 4.2

Clarity of Explanation 4.3
Relevance of Suggestions 4.1

Automatic evaluation utilized BLEU and ROUGE metrics to compare the system-generated
analyses with manually written standard analyses, yielding a BLEU-4 score of 0.42 and a
ROUGE-L score of 0.56. The quality of learning suggestions was assessed by tracking students'
learning progress. Data showed that 78% of students performed better on related questions in the
next test after adopting the system's suggestions, with an average improvement of 15%. In the user
feedback questionnaire, 89% of students felt that the learning suggestions provided by the system
were "very helpful" or "helpful."

4.3 Analysis of User Learning Effects
The analysis of user learning effects was conducted by comparing the score changes between the

experimental group and the control group. In the pre-test, there was no significant difference in the
average scores of the two groups (experimental group: 72.3 points, control group: 71.8 points, p =
0.62). After the experiment, the average score of the experimental group increased to 85.7 points,
while the control group achieved 78.2 points, showing a significant difference between the two
groups (p < 0.001), as shown in Table 3.

Table 3: Score Changes Between Experimental and Control Groups

Test Phase Experimental Group
Average Score (Points)

Control Group
Average Score

(Points)
p-value

Pre-experiment Test 72.3 71.8 0.62
Post-experiment Test 85.7 78.2 <0.001

The experimental group exhibited significant progress in all five mathematics modules, with the
most noticeable improvement in the functions module, where the average score increased by 18.5
points, as illustrated in Figure 5. Analysis of learning behavior data revealed a positive correlation
between the frequency of system use and score improvement (r = 0.68, p < 0.001). The average
number of mistakes solved by students in the system increased from 15 in the early stages to 27
later on. The questionnaire survey indicated that 92% of students believed the system helped them
better understand the reasons for their mistakes, and 86% stated that the system improved their



Advances in Engineering Technology Research IBCEE 2025
ISSN:2790-1688 Volume-13-(2025)

812

learning efficiency. Long-term tracking data showed that experimental group students scored an
average of 7.3 points higher in subsequent monthly tests and final exams compared to the control
group.

Figure 5: Module Progression

4.4 System Efficiency and Usability Evaluation
The evaluation of system efficiency was completed through load testing and analysis of actual

usage data. In simulations with 1,000 concurrent users accessing the system, the average response
time was 1.2 seconds, with 99% of requests being responded to within 3 seconds. During peak
testing, the system was able to stably handle 2,000 users online simultaneously, with a peak CPU
utilization of 78% and a maximum memory usage of 85%, as shown in Figure 6. Log analysis
indicated that the system's availability during the 8-week experiment reached 99.98%, with only
two brief service interruptions, totaling no more than 15 minutes of downtime. User behavior data
showed that the average session duration was 28 minutes, with the time spent on the mistake
analysis feature accounting for the highest proportion, at 65%. The usability evaluation of the
system used the System Usability Scale (SUS), scoring 84.5, which falls into the "excellent"
category. User feedback indicated that 92% of students found the system interface intuitive and
easy to use, and 88% reported that the system operated smoothly and responded quickly. Teacher
feedback revealed that the system significantly reduced the time spent on grading assignments,
saving an average of 2.5 hours per week per class.

Figure 6: Changes in CPU and Memory Utilization with Concurrent Users

4.5 Comparison with Existing Systems
To comprehensively evaluate the system's performance, a comparison of three mainstream

intelligent learning systems (A, B, and C) was conducted. The results show that our system
performs exceptionally well across various performance indicators, as illustrated in Figure 7. The
accuracy of error analysis is 87%, which is higher than A's 78% and B's 82%, and slightly better
than C's 85%. The relevance score for learning suggestions is 4.3 (out of 5), surpassing A (3.8), B
(4.0), and C (4.1). Users experienced an average score improvement of 13.4 points over 8 weeks,
significantly exceeding A (9.2 points), B (10.5 points), and C (11.8 points). The system response
time is 1.2 seconds, faster than A's 2.1 seconds and B's 1.8 seconds, and comparable to C's 1.3
seconds[10]. User satisfaction reached 92%, higher than A (83%), B (87%), and C (89%). The
average annual cost per user is 120 yuan, lower than A (150 yuan) and B (135 yuan), and similar to
C's 125 yuan.



Advances in Engineering Technology Research IBCEE 2025
ISSN:2790-1688 Volume-13-(2025)

813

Figure 7: System Performance Comparison

5. Conclusion
This study designed and implemented a mistake analysis and personalized learning feedback

system based on the Qwen2-7B model. By fine-tuning the model using LoRA technology, the
system performed excellently in mistake analysis and learning suggestion generation. Experimental
results indicated that this system significantly improved student learning outcomes, with the
average score increase for the experimental group notably higher than that of the control group. The
system outperformed mainstream intelligent learning systems on the market in terms of analysis
accuracy, response speed, and user satisfaction. Furthermore, the system's high availability and
good scalability lay a foundation for large-scale applications. Overall, this research provides an
effective solution for the field of intelligent education, demonstrating the potential of large language
models in personalized education.

References
[1] Liang C , Jia C .Research on the optimization model of personalized training for athletes based on

machine learning in college physical education[J].Applied Mathematics and Nonlinear Sciences, 2024,
9(1).

[2] Liu S , Lv S , Zeng D ,et al.Personalized Federated Learning via Amortized Bayesian
Meta-Learning[J].ArXiv, 2023, abs/2307.02222.

[3] Javanmard A , Mirrokni V .Anonymous Learning via Look-Alike Clustering: A Precise Analysis of
Model Generalization[J]. 2023.

[4] Zhang X , Wang Q .Graph Learning Across Data Silos[J]. 2023.
[5] Zhang R .A Personalized Course Resource Recommendation Method Based on Deep Learning in an

Online Multi-Modal Multimedia Education Cloud Platform[J].Int. J. Inf. Technol. Syst. Approach, 2023,
16:1-14.

[6] Manon Zoé.Leading the Path for Personalized Medication and Medical Technology: Highlighting the
strategies to Overcome Barriers to Adoption, Regulation, and Reimbursement Perspectives[J].Journal of
Commercial Biotechnology, 2023.

[7] Kumar S , Buddi S S , Sarawgi U O ,et al.Comparative Analysis of Personalized Voice Activity
Detection Systems: Assessing Real-World Effectiveness[J]. 2024.

[8] Lui M , Giosa D , Romeo O ,et al.Computational Pathways Analysis and Personalized Medicine in
HER2-Positive Breast Cancer[J].Current pharmacogenomics and personalized medicine, 2022.

[9] Niu K .A Personalized RecommendationAlgorithm based on LSTM Classification[C]//IEEE
International Conference on Advanced Infocomm Technology.Springer, Singapore, 2024.

[10] Ghobakhloo M , Ghobakhloo M .Design of a personalized recommender system using sentiment
analysis in social media (case study: banking system)[J].Social Network Analysis and Mining, 2022, 12.


	1.Introduction
	2.System Design and Method
	2.1Overall System Architecture
	2.2LoRA Fine-Tuning of the Qwen2-7B Model
	2.3Design of the Mistake Analysis Module
	2.4Design of the Personalized Learning Suggestions Ge
	2.5User Interface and Interaction Design

	3.System Implementation
	3.1Development Environment and Technology Stack
	3.2Data Processing and Model Fine-tuning
	3.3Implementation of Core Functional Modules
	3.4System Integration and Deployment

	4.Experiments and Evaluation
	4.1Experimental Setup
	4.2Quality of Mistake Analysis and Learning Suggestio
	4.3Analysis of User Learning Effects
	4.4System Efficiency and Usability Evaluation
	4.5Comparison with Existing Systems

	5.Conclusion
	References

