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Abstract. Aiming at the difficulty of processing multi-source heterogeneous data in intelligent
systems, a multi-layer data processing method based on deep learning is designed. A hierarchical
feature learning framework is developed to realize the feature extraction and fusion of multi-modal
data. Experimental data shows that this method achieves an accuracy of 96.3% when processing 3
million industrial data, with a processing delay of less than 15ms. The system adopts a distributed
architecture deployment, supporting 500,000 QPS real-time processing capability. The research
results have been applied in intelligent manufacturing and other fields, providing new ideas and
technical support for improving industrial big data processing efficiency.
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1. Introduction

With the advent of Industry 4.0, the data generated by intelligent manufacturing systems has
grown explosively, covering various forms such as structured, semi-structured, and unstructured
data. Facing the TB-level data stream generated every day, traditional data processing methods can
no longer meet the real-time requirements. Data analysis shows that the global industrial data
volume reached 156ZB in 2023, with a year-on-year growth rate of over 40%. Intelligent systems
urgently need efficient data processing methods to improve production efficiency and decision-
making accuracy. Based on this background, the application of deep learning technology in
industrial big data processing has important significance.

2. Multi-Layer Data Feature Analysis of Intelligent Systems

2.1 Data Feature Classification and Representation

The data features of intelligent systems present diverse characteristics, which can be classified
into structured data, semi-structured data, and unstructured data according to data types. In a certain
intelligent manufacturing system practice, structured data accounts for 37.5%, mainly including
numerical data such as temperature, pressure, and speed collected by sensors; semi-structured data
accounts for 28.3%, containing XML documents, log files, etc.; unstructured data accounts for
34.2%, involving images, videos, audio, and other multimedia data. By quantitatively analyzing
these data features, a feature representation model is established: F = {fi, 5, ..., fu}, where f
represents the feature vector [1]. Experimental data shows that using this model to represent 10,000
production data features achieves an accuracy of 93.2%, as shown in Table 1. In the feature
representation process, one-hot encoding is used to process discrete features, and normalization is
used to process continuous features, effectively improving the usability of the data.

Table 1. Data Feature Classification and Representation Effect Statistics

Data Type Data Volume (Entries) | Feature Dimension | Representation Accuracy (%)
Structured 3750 128 95.3
Semi-structured 2830 256 92.8
Unstructured 3420 512 91.5
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2.2 Multi-Modal Data Preprocessing Technology

Multi-modal data preprocessing is a crucial link in improving system performance.
Differentiated processing strategies are adopted for different modal data. Time-series data is
segmented using the sliding window method, with a window size of 128 and a step size of 64,
effectively cutting high-frequency sampling data (sampling rate 1000Hz). Image data is scaled to
224 x 224 pixels and normalized to enhance image contrast [2]. Text data is processed by word
segmentation, stopword removal, and then using the Word2Vec model to set the word vector
dimension to 300. Audio data extracts MFCC features, with 13 coefficients fully describing
acoustic features. The quality of preprocessed multi-modal data is significantly improved, with data
redundancy reduced by 42.3% and signal-to-noise ratio increased by 3.6dB, as shown in Figure 1.

Comparison of Multi-modal Data Preprocessing Effects
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Fig. 1. Multi-Modal Data Preprocessing Effect Comparison

2.3 Feature Extraction and Dimensionality Reduction Methods

Feature extraction adopts a strategy combining deep learning and traditional methods,
constructing a multi-layer feature extraction framework. Convolutional neural networks are used for
image feature extraction, adopting the ResNet-50 architecture to extract 2048-dimensional feature
vectors; recurrent neural networks process time-series data, with LSTM unit numbers set to 512. In
traditional dimensionality reduction methods, the PCA algorithm reduces the feature dimension
from 1024 to 256 while preserving 85% of the information, and the t-SNE algorithm maps high-
dimensional features to 3-dimensional space for visualization analysis [3]. In actual projects, this
method processes 500,000 industrial data, reducing feature extraction time by 36.7%, and achieving
a feature fidelity of 91.8% after dimensionality reduction. The dimensionality reduction effect
evaluation uses two indicators: reconstruction error and information retention rate, as shown in
Table 2.

Table 2. Performance Comparison of Different Dimensionality Reduction Methods

Dimensionality Original Reduced Reconstruction | Information Retention
Reduction Method Dimension Dimension Error Rate (%)
PCA 1024 256 0.086 85.3
t-SNE 1024 3 0.152 78.6
LDA 1024 128 0.113 82.1
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2.4 Data Quality Evaluation System

A data quality evaluation system based on multi-dimensional indicators is established, including
completeness, accuracy, timeliness, and consistency. By deploying a distributed data quality
monitoring system, the quality of the data stream is evaluated in real-time. The evaluation results
show that in the process of handling 100TB industrial big data, the data completeness reaches
98.3%, accuracy is 96.7%, timeliness indicator shows that 95% of the data processing delay is less
than 100ms, and data consistency check pass rate is 97.2%. The quality evaluation uses a weighted
scoring method, and the weight coefficient is determined by the analytic hierarchy process, finally
obtaining a comprehensive score of 92.8 [4]. The dynamic trend of data quality over time is shown
in Figure 2, presenting a steady upward trend, with a month-on-month increase of 1.2%.

Trend of Data Quality Scores Over Time
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Fig. 2. Data Quality Score Trend Over Time

3. Multi-Layer Data Processing Method Based on Deep Learning

3.1 Hierarchical Feature Learning Framework Design

The hierarchical feature learning framework adopts a multi-layer structure, from bottom to top,
including data input layer, feature extraction layer, feature fusion layer, and decision output layer.
The input layer receives multi-source heterogeneous data, including sensor data, image data, and
text data; the feature extraction layer uses a deep convolutional network to extract spatial features,
with a network depth of 18 layers, and each layer's convolution kernel size is 3x3, with a stride of 1.
The feature expression ability increases with the network depth, and the 18th layer feature map
dimension is 7 X 7 x 512. Experiments show that this framework achieves a feature extraction
accuracy of 94.3% when handling 100,000 sets of industrial data, which is 15.2 percentage points
higher than traditional methods [5]. The framework performance evaluation results are shown in
Table 3, with a computational complexity of O(n log n), and training time reduced by 32.6%
compared to the baseline model.

Table 3. Hierarchical Feature Learning Framework Performance Evaluation

Evaluation Indicator Value Improvement (%)
Accuracy 94.3 15.2
Recall 92.8 12.7
F1 Score 93.5 13.9
Training Time 4.2h -32.6
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3.2 Multi-Scale Feature Fusion Strategy

Multi-scale feature fusion adopts an adaptive weight mechanism, establishing a feature
importance evaluation model. Through pyramid pooling networks, different scale features are
extracted, with pooling layers set to {1x1, 2x2, 4x4}  generating multiple feature maps. The feature
fusion process uses an attention-weighted method, with weight coefficient w calculated through the
softmax function: w = softmax(V-tanh(WH)), where V and W are learnable parameter matrices, and
H is the feature matrix. Experimental data shows that this fusion strategy achieves an average
detection accuracy of 96.2% in 80 sets of visual detection tasks, with a false detection rate of 0.8%
[6]. The contribution analysis of different scale features is shown in Table 4, indicating that
medium-scale features have the greatest impact on model performance.

Table 4. Contribution Analysis of Different Scale Features

Feature Scale Feature Dimension | Weight Coefficient | Performance Contribution Rate (%)
Small Scale 256 0.25 28.3

Medium Scale 512 0.45 42.7
Large Scale 1024 0.3 29

3.3 Application of Attention Mechanism in Feature Processing

The attention mechanism achieves adaptive adjustment of feature importance through dynamic
weight allocation, constructing a dual attention module: spatial attention and channel attention.
Spatial attention calculation formula is AS = o(f(|AvgPool(F);MaxPool(F)])), where F is the input
feature map; channel attention adopts a squeeze-and-excitation structure, with a compression ratio
of 16. In practical applications, this mechanism significantly improves the feature extraction effect,
achieving a detection accuracy of 97.5% in 5000 industrial product defect image recognition tasks,
which is 8.3 percentage points higher than the baseline model [7]. Attention weight visualization
results are shown in Figure 3, demonstrating the model's ability to accurately locate key feature
regions.

Comparison of Multi-modal Data Preprocessing Effects
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Fig. 3. Attention Weight Visualization Analysis

3.4 End-to-End Data Processing Model

The end-to-end data processing model integrates the entire process of feature learning, fusion,
and decision-making, using residual connections to optimize information flow. The model consists
of an encoder and a decoder, with the encoder using 5 residual blocks, each containing two 3 x3
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convolutional layers and one 1X1 convolutional layer; the decoder uses transposed convolutional
layers to reconstruct features. The loss function combines cross-entropy loss and L2 regularization:

—5 ()+ )

In testing 2 million industrial production data, the model achieves an end-to-end processing
accuracy of 95.8%, with an average processing delay of only 15ms [8]. The performance
comparison of different batches of data is shown in Table 5, verifying the model's stability and
scalability.

Table 5. End-to-End Model Performance Evaluation

Data Batch Sample Size (10,000) Accuracy (%) Processing Delay (ms)
First Batch 50 95.8 15

Second Batch 70 95.3 16
Third Batch 80 94.9 17

4. Intelligent System Optimization and Performance Evaluation

4.1 System Architecture Design and Implementation

The intelligent system adopts a distributed microservice architecture, containing four core
modules: data collection, preprocessing, feature learning, and decision output. The system is
deployed on a Kubernetes cluster with 15 computing nodes, each configured with an Intel Xeon
Gold 6248R processor and an NVIDIA A100 GPU. The data collection module supports processing
500,000 data streams per second, using a Redis caching mechanism to ensure data real-time [9].
The overall system architecture is shown in Figure 4, using message queues to implement inter-
module communication, with an average response time of less than 10ms. Load balancing uses a
dynamic weight algorithm, with the calculation formula W = a-CPU + B-MEM + y-NET, where o
=0.4, B=0.3, y=0.3. The system stability reaches 99.99%, with a single-node peak processing
capacity of 100,000 QPS.
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Fig. 4. System Architecture Diagram

4.2 Model Training and Optimization Methods

Model training uses a distributed parallel training strategy, implemented using the PyTorch
framework. The training dataset contains 3 million industrial production data, divided into training,
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validation, and testing sets in an 8:1:1 ratio. The optimizer uses Adam, with an initial learning rate

0f 0.001, and a cosine annealing scheduling strategy. To prevent overfitting, dropout (rate=0.5) and
L2 regularization (coefficient A=0.0001) are introduced. During training, gradient accumulation
technology is used to expand the batch size to 1024, significantly improving training efficiency [10].
The loss function convergence curve is shown in Figure 5, reaching a stable state at the 150th epoch,
with a final validation set loss value of 0.086. The model parameter quantity is compressed from the
original 89M to 23M, with a 2.8-fold increase in inference speed.

Model Training Loss Convergence Curve
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Fig. 5. Model Training Loss Convergence Curve

4.3 System Performance Evaluation Indicators

The system performance evaluation uses a multi-dimensional indicator system, including
accuracy, recall, F1 score, processing delay, and other key indicators. In the actual production
environment, the system runs continuously for 30 days, processing 500 million data entries, with an
average accuracy of 96.3%. The system throughput varies with the number of concurrent requests,
as shown in Table 6, maintaining stable performance even at 2000 concurrent requests. Resource
utilization monitoring shows that the CPU average load is 65%, memory usage is 72%, and GPU
utilization reaches 85%. Using the AMIS scoring model (Accuracy-Memory-Inference-Speed) to
comprehensively evaluate the system, the final score is 92.5, exceeding the industry average by
15%.

Table 6. System Performance and Concurrency Relationship

Concurrency Response Time (ms) Throughput (QPS) Success Rate (%)
500 8 62,500 99.99
1000 12 83,333 99.95
2000 15 133,333 99.9

4.4 Experimental Results Analysis and Comparison

Through comparison experiments with three mainstream commercial systems, the system's
advancedness and practicality are verified. The test dataset contains 500,000 multi-modal data
entries, covering images, text, and time-series data. Experimental results show that the system
outperforms the comparison systems in accuracy, processing speed, and resource consumption, as
shown in Table 7. Particularly in high-concurrency scenarios, the system shows a significant
advantage, with a processing delay increase of only 12%, while the comparison systems' average
increase is 35%. ROC curve analysis shows that the system's AUC value reaches 0.982, surpassing
the second-place system's 0.953. Cost-benefit analysis shows that the system's deployment and
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maintenance costs are reduced by 42.3% compared to traditional schemes, with an annualized
return on investment of 286%.

Table 7. System Performance Comparison Results

System Name | Accuracy (%) | Processing Delay (ms) | Resource Utilization (%) | AUC Value

This System 96.3 15 72 0.982
System A 92.1 25 85 0.953
System B 90.8 28 88 0.941
System C 89.5 32 91 0.932

5. Conclusion

This study constructs a multi-layer data processing framework based on deep learning, which
improves system performance through hierarchical feature learning. Experimental verification
shows that the framework achieves an accuracy of 96.3% and a processing delay of 15ms when
handling industrial big data. The introduction of attention mechanisms improves feature extraction
efficiency by 36.7%, and the dimensionality reduction achieves a feature fidelity of 91.8%. The
distributed system architecture realizes real-time processing of 500,000 data entries per second,
with overall system performance exceeding existing commercial systems by 15% or more. The
research results have been applied in multiple industrial scenarios, providing new ideas for data
processing in the intelligent manufacturing field. Future research will focus on optimizing model
lightweighting and exploring new algorithms to improve system scalability.
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